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Abstract

Radio frequency interference (RFI) mitigation remains a major challenge in the search for radio technosignatures.
Typical mitigation strategies include a direction-of-origin (DoO) filter, where a signal is classified as RFI if it is
detected in multiple directions on the sky. These classifications generally rely on estimates of signal properties,
such as frequency and frequency drift rate. Convolutional neural networks (CNNs) offer a promising complement
to existing filters because they can be trained to analyze dynamic spectra directly, instead of relying on inferred
signal properties. In this work, we compiled several data sets consisting of labeled pairs of images of dynamic
spectra, and we designed and trained a CNN that can determine whether or not a signal detected in one scan is also
present in another scan. This CNN-based DoO filter outperforms both a baseline 2D correlation model and existing
DoO filters over a range of metrics, with precision and recall values of 99.15% and 97.81%, respectively. We
found that the CNN reduces the number of signals requiring visual inspection after the application of traditional
DoO filters by a factor of 6–16 in nominal situations.

Unified Astronomy Thesaurus concepts: Search for extraterrestrial intelligence (2127); Technosignatures (2128);
Astrobiology (74); Radio astronomy (1338); Convolutional neural networks (1938)

1. Introduction

Radio technosignature searches have increased dramatically in
both scope and complexity since the early days of the search for
extraterrestrial intelligence (Drake 1965, 2011; Tarter 2001; Tarter
et al. 2010, and references therein). In the past 3 yr alone, the
UCLA SETI Group’s radio technosignature detection algorithms
have undergone multiple levels of improvements, increasing the
total number of detections in a typical 2 hr observing window by
more than an order of magnitude (Pinchuk et al. 2019; Margot
et al. 2021). Our current pipeline detects ∼200 times more signals
per unit bandwidth per unit integration time than recent Break-
through Listen (BL) searches (Enriquez et al. 2017; Price et al.
2020; Gajjar et al. 2021) with the same telescope, receiver, and
detection threshold. We have also improved our radio frequency
interference (RFI) excision algorithms, yielding RFI classification
accuracies of >99% on data sets with millions of candidate
signals. Other groups are making progress along these lines as
well. For instance, the custom hardware system that enabled the
early 1990s NASA High Resolution Microwave Survey was
migrated to a software platform whose RFI excision capabilities
have continued to evolve (Harp et al. 2016). Traas et al. (2021)
reported the results from a search of 28 targets selected from the
TESS Input Catalog and also described an improvement to the BL
RFI excision technique.

Despite these advancements, RFI remains the biggest
challenge to the search for technosignatures. Pinchuk et al.
(2019) and Margot et al. (2021) described several pitfalls of
current RFI identification algorithms that rely on inferred signal
properties, such as estimates of frequency and frequency drift
rate. They suggested that these hurdles might be overcome by

an algorithm that instead examines the structure of candidate
signals in time–frequency space. Because the time–frequency
structure of a signal resembles an image, we can readily apply
modern computer vision techniques to this problem, as also
suggested by Cox et al. (2018), Zhang et al. (2018b), Harp et al.
(2019), and Brzycki et al. (2020).
The last decade (2010–2020) has seen considerable advances in

the field of convolutional neural networks (CNNs). In 2012,
Krizhevsky et al. (2012) introduced the AlexNet architecture,
which won the ImageNet ILSVRC challenge (Russakovsky et al.
2015) the same year. This architecture achieved a top-five error
rate of 17%, which represents the percentage of test images
(256× 256 pixels) for which the network’s top five predictions,
chosen from a total of 1000 classes, did not include the correct
answer. This was an unprecedented accomplishment at the time.
An explosion of CNN architectures followed in subsequent years,
each performing better than the last (Simonyan & Zisserman 2014;
Szegedy et al. 2015; He et al. 2016; Chollet 2017). Modern CNN
architectures have achieved top-five error rates of 3% or less (e.g.,
Tan & Le 2019).
Machine learning (ML) has permeated both the workforce

and the research industry, often leading to large improvements
in challenging classification problems. In particular, astron-
omers have already applied CNNs to push the boundaries of
astronomical data analysis. For example, Schawinski et al.
(2017) trained a generative adversarial network composed of
two CNNs (one to classify samples and another to generate
them during training) to recover features such as galaxy
morphology from low signal-to-noise ratio (S/N) and low
angular resolution images. Shallue & Vanderburg (2018)
trained a deep CNN to predict whether a signal found in
Kepler data was a transiting exoplanet or a false positive,
allowing them to detect and validate a five-planet resonant
chain around Kepler-80 and a new, eighth planet around
Kepler-90. Zhang et al. (2018a) detected 72 new pulses from
the repeating fast radio burst FRB 121102 using a CNN trained
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on radio astronomy data obtained with the Green Bank
Telescope. For a more detailed overview of ML and CNNs
applied to astronomy, see Baron (2019) and references therein.

Applications for CNNs have been explored in the context of
radio technosignature searches. Cox et al. (2018) and Harp et al.
(2019) both generated a labeled set of synthetic candidate signals
from a small (<10) number of RFI classes to train a CNN for RFI
classification. Although this approach provides a relatively simple
way to obtain a labeled training set, the synthetic signals may not
be representative enough of actual signals and may therefore
introduce a bias during model training. Zhang et al. (2018b)
avoided this problem by using self-supervised learning to train
their network. Specifically, their CNN was trained to predict the
future time–frequency structure of a signal given the time–
frequency structure from a past subset of the total observation.
This method allowed the observations to act as both the training
set and the training labels for the model. However, in order to
apply the network for RFI excision, the similarity of the predicted
signals and the observed signals must be evaluated. Because this
task is not trivial, the RFI classification performance of the
network may suffer. Brzycki et al. (2020) explored the application
of CNNs to technosignature candidate signal detection. Specifi-
cally, the authors trained a CNN to detect up to two signals in a
frequency span of ∼1400 Hz. Although a potential improvement
over the detection algorithms of Enriquez et al. (2017) and Price
et al. (2020), this CNN cannot yet compete with the detection
algorithms described by Margot et al. (2021), which can detect
hundreds of signals within the same frequency range.

In this work, we describe an application of CNNs to the
excision of RFI in technosignature data. The paper is organized
as follows. Our motivation and approach to this problem are
presented in Section 2. Our data compilation procedure is
detailed in Section 3. In Section 4, we describe our approach to
CNN model selection and hyperparameter tuning. We also
describe a non-ML baseline model that we use as a point of
comparison to the trained CNN. Section 5 summarizes our
results, including the final model performance on the test set
and archival data. In Section 6, we describe several failure
modes of our trained network and offer avenues for future
improvements. We present conclusions in Section 7.

2. Motivation and Approach

Modern radio technosignature programs detect millions of
signals per survey (e.g., Siemion et al. 2013; Harp et al. 2016;
Enriquez et al. 2017; Margot et al. 2018, 2021; Pinchuk et al.
2019; Price et al. 2020; Gajjar et al. 2021). These signals must
be carefully analyzed to determine whether or not they are of
anthropogenic nature. The standard approach to perform this
analysis is the direction-of-origin (DoO) filter. This filter labels
a signal as RFI if it is not persistent in one direction on the sky
or is detected in multiple directions on the sky. Theoretically,
this filter is powerful enough to remove all RFI signals that are
detected in multiple scans. In practice, this filter often fails on a
small subset of signals, but even failure rates as low as 1% can
be costly because visual inspection of the remaining signals
may be necessary. For instance, the filter failure rates in the
searches of Pinchuk et al. (2019) and Margot et al. (2021) were
1.66% and 0.162%, respectively, requiring further examination
of 96,940 and 43,020 signals, respectively.

The main pitfall of the DoO filter is the accuracy with which a
unique signal can be linked across multiple scans. This “signal
pairing” is required for both the persistence-test (present in all

scans of the source) and the uniqueness-test (absent in scans of
other sources) portions of the filter. Different surveys implement
this pairing functionality in various ways. For example, Enriquez
et al. (2017) and Price et al. (2020) considered two signals to be
from a common origin if the frequency at which the latter signal
is detected is within a generous tolerance of ±600Hz of the
detection frequency of the first signal, even if the corresponding
frequency drift rates are unrelated. Although this approach speeds
up the analysis by discarding a large portion of the candidate
signals, it is problematic because it may eliminate valid
technosignatures. A more rigorous approach was adopted by
Pinchuk et al. (2019) and Margot et al. (2021). In both of these
searches, two signals were paired only if their frequency drift rates
and frequencies extrapolated to a common epoch are within a
small tolerance. More robust versions of this filter could include
tests of other signal properties, such as signal bandwidth or off-
axis gain ratio.
In all four searches described in the preceding paragraph, the

filter was applied to estimates of signal properties produced by a
computer program on the basis of the time–frequency structure of
each signal. Therefore, the efficiency of the filter relies heavily on
the accuracy of the derived signal properties. When the estimates
of these signal properties are imprecise or incorrect, or when the
underlying assumption of a linear drift rate is violated, the filter
classification fails. Pinchuk et al. (2019) detailed five different
signal types for which their DoO filter exhibited a degraded
performance. Importantly, this limitation can likely be overcome
by an algorithm that examines the time–frequency structure of
each signal directly.
In this work, our approach is to train a CNN to pair signals by

directly examining the corresponding dynamic spectra. The
trained network is then used to examine the data as follows.
For each signal detected in the survey, we extract a portion of the
dynamic spectrum centered on the time–frequency location of the
signal as the first input to the network. This dynamic spectrum is
guaranteed to contain a signal, because the minimum detection
threshold in typical SETI searches is set at�10 times the standard
deviation of the noise. Using an estimate of the drift rate of the
signal in this dynamic spectrum, we extrapolate the expected
detection frequency to the starting epoch of a different (typically
subsequent) scan. We then extract a portion of the dynamic
spectrum of the second scan to use as the second input to our
network. This portion has the same dimensions as those of the first
input and is centered on the expected detection frequency. The
output of the network provides an assessment of whether or not
the second dynamic spectrum contains the same signal as the first
dynamic spectrum. The CNN will be trained to perform this task
with a large (∼1 million) labeled training set, such that the CNN
can make this assessment by recognizing patterns in the images,
as opposed to calculating and comparing estimates of signal
properties like frequency and drift rate.
In what follows, we will use the terms “first” or “top” image to

refer to the dynamic spectrum of the first scan, which must contain
a signal of interest. Likewise, we will use the terms “second” or
“bottom” image to refer to the dynamic spectrum of the second
scan, which may or may not contain the same signal.

3. Data Preparation

3.1. Observations

We compiled our data set from the observations presented by
Pinchuk et al. (2019). Those observations were conducted on
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2017 May 4, 15:00–17:00 universal time (UT), with the 100 m
diameter Green Bank Telescope. Both linear polarizations of
the L-band receiver were recorded with the GUPPI back end
in its baseband mode (DuPlain et al. 2008). GUPPI was
configured to channelize 800 MHz of recorded bandwidth into
256 channels of 3.125 MHz each.

The observations primarily consisted of sources from the
Kepler field but also included scans of TRAPPIST-1 and LHS
1140. A total of 12 sources were scanned. A full list of targets
and their properties can be found in Table 1 of Pinchuk et al.
(2019). This article also includes details relating to the
formation of the dynamic spectra, which have a time resolution
of 0.336 s and frequency resolution Δν of 2.98 Hz.

A total of 10,293,618 signals were detected in the data,
8,592,771 of which have an S/N � 10. Because we had a large
number of signals to choose from, we carefully pruned the data
according to principles described in Section 3.3 in order to
obtain the best possible training candidates.

3.2. Definition of Data Sets

In order to successfully train our CNN, we need to set aside
several small portions of our data that we can use to evaluate
the model performance during and after training. Typically, it is
recommended to set aside 10%–20% of the training data as a
“validation” set that is used to evaluate important metrics like
precision, recall, and a model cost function or loss
(Géron 2019). These metrics can then be used to tune model
hyperparameters (Section 4.3) or identify problems like
overfitting, which occurs when a neural network simply learns
to reproduce the labels of the training data and therefore
generalizes poorly to any other data. Standard ML practices
suggest that another 10%–20% of the training data should be
set aside as a “test” set that is only ever used to evaluate the
performance of the final model. This evaluation is important in
order to obtain an accurate estimate of how well the model
generalizes to data that it has never seen before.

When the training data are representative of the data that the
model will see in a production environment, the training,
validation, and test sets are enough to successfully train a CNN
from start to finish. However, because we needed to label a
large training set in an automatic manner (Section 3.4.1), our
training data consist of two images taken from a single scan,
whereas the production data consist of two images from
entirely separate scans. This difference between training and
production data makes our application atypical and requires
adjustments to standard ML practices. In particular, it is
possible for the network to perform well on the training data
but poorly on the production data. This situation occurs when

there is a “data mismatch” and often requires some manipula-
tion of the training set in order to better match the production
data. Importantly, this condition must be detected and
addressed before the model is put into production. If the
validation set is generated as a subset of the training set, then
data mismatch is impossible to detect. On the other hand, if the
validation data is comprised only of data that the model will see
in production, it is not possible to discern whether poor model
performance is attributable to data mismatch or to model
training issues, such as overfitting, in the absence of other
information. The solution to this problem is to create an
additional data set, the “train-dev” set, which is a subset of
10%–20% of the training data and is used to monitor the
performance of the model during training and detect problems
like overfitting. With the “train-dev” set on hand, we can
compile validation and test sets that match the data that the
model will see in production. These two data sets are hand-
labeled, as is standard in most ML applications, and are
therefore much smaller than the training and train-dev sets. The
validation and test sets provide a useful way to select an
appropriate CNN architecture, tune hyperparameters, and
measure the model’s generalization to new data, among
other uses.
We compiled a subset of signals from the hand-labeled

validation and training sets to evaluate the performance of the
UCLA SETI Group DoO filter. In order to facilitate a fair
comparison to our CNN, we only kept the labeled image pairs
that corresponded to different scans of the same source, and we
only applied the persistence portion of the DoO filter to these
signals (the signal pairing logic is identical for both
components of the filter). This is important because the DoO
filter examines many different scans from a single observing
session to look for the presence of a given signal elsewhere on
the sky. However, when determining if the signal is persistent
in its detection direction, the filter only examines the two scans
of the source containing the signal of interest. The latter is
consistent with a standard application of the CNN trained in
this work and therefore offers the best comparison between the
performance of the existing DoO filter and the CNN.
We also made use of a small hand-labeled data set of image

pairs to optimize and evaluate a baseline model (Section 4.1).
This model, which does not rely on ML techniques, provides a
mechanism to test the performance improvement due to the ML
application. Table 1 summarizes the data sets utilized in
this work.
Note that the validation and test sets are much smaller than

the training and train-dev sets because the former had to be
analyzed and labeled by hand, whereas the latter were labeled
automatically, as described in Section 3.4.

Table 1
Data Set Name, Size, and Usage for All Data Sets Presented in This Work

Name Size Usage Hand-labeled?

Training 1,000,000 Training and evaluating the CNN No
Train-dev 100,000 Evaluating the CNN (overfitting) No
Validation 1156 Evaluating the CNN (data mismatch) Yes
Test 1272 Evaluating the CNN (final results) Yes
UCLA DoO test 1238 Evaluating the UCLA DoO filter Yes
Baseline 524 Optimizing and evaluating the baseline model Yes

Note. Sections 3.4 and 3.5 detail the data compilation strategy, including the choice of data set size. The parentheses in the “Usage” column specify a particular use
case for the data set. The final column details whether or not the data set was labeled by hand. All hand-labeled sets resemble the data processed by the model in a
production setting.
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3.3. Data Selection Filters

We began by examining the distribution of drift rates of the
8,592,771 signals detected in 2017 (Figure 1, left). We
observed that the vast majority (>98%) of detected signals
have drift rates f 2∣ ∣ Hz s−1. Moreover, by examining the
dynamic spectra of signals with drift rates f 2>∣ ∣ Hz s−1, we
observed a lack of the narrowband characteristics that are often
chosen as one possible diagnostic of extraterrestrial engineered
emitters. For these reasons, we excluded 168,684 (1.96%)
signals with drift rates f 2>∣ ∣ Hz s−1 from the training set.

We performed a similar cut on the basis of the S/N of the
detected signals. In particular, we opted to remove any signals
with a large S/N. Based on the cumulative distribution of S/N
shown in the middle panel of Figure 1, we chose to discard any
signals with an S/N > 600. This threshold was large enough to
preserve >99% of the remaining signals but also remove any
extreme S/N outliers. As a result of this filter, we removed
58,399 (0.69%) signals with extreme S/N from the training set.

Next, we examined the bandwidth of the remaining signals,
as quantified by a full width half maximum (FWHM) metric.
The bandwidth of the training signals is especially important
because we needed our training set signals to fit within a
225× 225 image. This image size was chosen to satisfy a few
considerations. First, the number of rows cannot exceed half
the number of rows in the dynamic spectra, which is ∼490 for
the 2017 data at 2.98 Hz frequency resolution. Second, the
number of columns must be an odd number so that signals can
be perfectly centered in the image. Third, the input sizes for
models like ResNet52 are images of size 224× 224 pixels (He
et al. 2016) and have been shown to be manageable with
modern CNN architectures. Our chosen image size corresponds
to an upper limit of ∼670 Hz on the bandwidth of the signals.
However, because we are only interested in narrowband signals
(�10 Hz) in this work, we can set the bandwidth threshold
much lower than the theoretical upper limit. The distribution
shown in the right panel of Figure 1 suggests a threshold value
of 100 Hz. As a result of this filter, we removed 15,044 (0.18%)
signals with large bandwidths from the training set.

Finally, we discarded 6447 signals that were detected close
enough to the edge of their 3.125 MHz wide channel such that
the signal overlapped with a neighboring channel. Although we
could “stitch” neighboring channels together to fully recover
these signals, given the vast number of signals left to choose
from, we decided to simply remove this tiny fraction of signals

from consideration for the purpose of building the training set.
When we evaluate actual data with the CNN, we do combine
two channels when necessary to correctly represent signals
located near the channel edges.
Overall, the filters above discarded 248,594 of the 8,592,771

detected signals, leaving 8,344,177 (97.11%) available to use
for our training set. If we assume that the distributions of drift
rates, S/Ns, and bandwidths remain relatively constant over
time and the RFI observed with the 2017 antenna pointing
directions is representative of other directions, then the network
trained on our pruned data set should be applicable to ∼97% of
the detected signals in future searches with similar parameters.
If the RFI environment changes so much in time or space that it
severely alters the distributions of the signal properties, this
percentage value could change. Although the RFI environment
may evolve in time and space, we were able to verify that these
filters still captured ∼97% of the detected signals in searches
conducted in 2018 and 2019 by Margot et al. (2021) with
different antenna pointing directions. Specifically, 97.4%
(9,845,561 out of 10,113,551) and 97.2% (16,048,515 out of
16,518,362) of the signals detected in 2018 and 2019,
respectively, passed the data selection filters described above.
The range of signals selected for the labeled training set

translates into a finite domain of applicability for the CNN.
Because the CNN was not designed for signals with S/N < 10,
frequency drift rates f 2>∣ ∣ Hz s−1, or bandwidths >100 Hz, it
may not perform well when applied to such signals. Therefore,
we recommend eliminating signals that are outside the domain
of applicability of the CNN prior to applying the CNN. Note
that the applicability of the training set to new data sets and the
CNN’s decision accuracy are two different concepts. We
evaluate the latter in Section 5.2.

3.4. Generation of the Training and Train-dev Sets

Labeling a sizable training set by hand is time-consuming.
To bypass this limitation, we developed a strategy to
synthetically generate our labeled data set. Because we are
interested in training a neural network to supplement our DoO
filters by detecting whether or not a signal is present in two
separate images, we need a training set that consists of pairs of
images labeled with a binary flag indicating the persistence of a
signal across both scans.

Figure 1. Histograms of the (left) drift rates, (middle) S/N, and (right) bandwidths as measured by an FWHM metric of detected signals.
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3.4.1. Creation of Image Pairs

In order to simulate a pair of scans containing the same
signal, we split the image representing a single scan into two
parts along the time dimension. We then evaluated whether the
signal was detected in both the top and bottom parts. If the
signal was detected in both, we labeled the pair as a positive
sample. Otherwise, we labeled the pair as a negative sample to
signify that the signal was present in only one of the two parts.
In practice, the detection decisions are implemented by
computing the ratio of signal powers in the top and bottom
parts.

The power ratio calculations rely on the simplifying
assumption that the total integrated power associated with
each signal is distributed evenly throughout the duration of the
scan. In other words, we expect the signal in each half of the
spectrum to contribute equally to the total power. We
calculated the signal power detected in each half of the scan
and recorded these values as power ratios (Ptop, Pbottom), where
the denominator is half of the total signal power in the scan.
The signal power was calculated by summing 2n+ 1 pixels at
each time step along a line with a slope equal to the drift rate of
the signal, where n 1.5 B

2
FWHM= ´

nD
⎢⎣ ⎥⎦ pixels on either side of

the line, where BFWHM is the bandwidth of the signal measured
in hertz, Δν= 2.98 Hz is the frequency resolution of the data,
and ⌊ ⌋ is the floor operator. The drift rate of the signal was
assumed to be the same in both halves of the spectrum. To
calculate the signal power in the top half of the dynamic
spectrum, we started at the pixel corresponding to the detection
frequency of the signal. To calculate the power of the signal in
the bottom half, we started at the center frequency obtained by
linearly extrapolating the signal detection frequency to the
appropriate time. The total signal power was obtained by
summing the two halves. By comparing the ratio of powers in
the top and bottom halves of each scan to a suitable threshold,
we were able to assign an appropriate label to each signal.
Section 3.4.2 describes the selection of the threshold.

This approach allowed us to label a large number of signals
in a short period of time. We chose to compile the training and
train-dev data sets from a pool of 1,100,000 total signals, which
is a random selection among the 8,344,177 signals that meet
certain criteria described below. For reference, the popular
MNIST handwritten digit data set (LeCun et al. 1998), as well
as the CIFAR-10 (Krizhevsky & Hinton 2009) multiclass
image data set, both contain 60,000 samples each. Both the
training and train-dev sets contain an equal ratio of positive and
negative samples. We set aside 100,000 signals for the train-
dev set, leaving 1 million signals to be used as the training set.

In order to be accepted into the training set or train-dev data
set, the signals had to satisfy several criteria. Most importantly,
the top image in a pair, which mimics the first scan in an actual
observing sequence, must always contain a signal. Moreover,
the primary signal must always be centered in the top image
and nearly centered in the bottom image; i.e., the signal must
start in or near the middle of the frequency array in the topmost
time bin. This requirement affects the construction and
processing of the images, which are described in
Section 3.4.3. In particular, we allowed a small tolerance on
the location of the signal in the bottom image, but the signal in
the top image must always start at column 113 (if counting
from 1) in the first row of the 225× 225 images. Both of these
criteria can easily be met in production, because one can apply
these cropping steps to detected signals with known starting

frequencies. For signals whose bandwidth spans several pixels,
the starting frequency is defined as the starting frequency
reported by the detection algorithm, which is where most of the
power is detected (Margot et al. 2021).

3.4.2. Selection of Suitable Signals

We began by examining the S/N of each signal in the top
half of the scan only. In order to satisfy the underlying
assumption that there is definitely a signal in the center of the
first image (represented in the training set by the top half of the
scan), we required a minimum top-half S/N of at least 6
(Figure 2), which corresponds to an ∼1 in a billion false-
detection rate.
We validated our choice of threshold by examining a sample

of signals below the cutoff value. We found that most of these
signals are faint and difficult to detect visually, while the rest
are not present at all. On the contrary, signals above this
threshold are clearly visible in the dynamic spectra.
Appendix A illustrates these two cases.
As we performed our final selection, we needed to allow for

variations in the S/N of the top and bottom portions of the
positive signals, since the top and bottom portions represent
two separate scans, and we have empirically observed that the
S/N can change substantially between scans. To do so, we
compared the integrated power values from the top and bottom
halves of each signal. Specifically, we examined the distribu-
tion of the ratio of bottom to top integrated powers (i.e.,
Pbottom/Ptop). We found that approximately 50% of the signals
have a ratio between 0.75 and 1.25 (Figure 3), so we randomly
selected 550,000 signals from this region to represent our
positive samples (i.e., a signal is detected in both scans/
images). Additionally, we selected 50,000 signals with a ratio
of 0.2 or lower to partially represent our set of negative samples
(see blue line in Figure 3). To ensure the absence of a signal
from the bottom half, we verified that none of these samples
had any signals with a prominence value greater than three

Figure 2. Histogram of the S/N detected in the top half of each scan. The blue
vertical line shows the S/N cutoff value of 6 used to remove signals with low
power in the top half of the scan.
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times the standard deviation of the noise in the bottom half (see
Margot et al. 2021, Section 3.1, for an in-depth discussion of
the prominence calculation). Appendix A depicts a sample of
these signals. Ideally, all negative samples would be obtained
with this method, but there were not enough of these signals to
provide the necessary negative samples. Since this category is
grossly underrepresented in the data, we used data augmenta-
tion to create more negative samples. Specifically, the
remaining 500,000 negative samples were obtained by taking
samples from the region with a Pbottom/Ptop ratio between 0.75
and 1.25 and altering them in four different ways to remove
any signals present in the bottom half. This process is described
below.

3.4.3. Processing of Selected Signals

After selecting the signals for our training set, we applied
some processing to ensure that signals in the positive and
negative categories were representative of their respective
labels.

We first considered the 550,000 signals from the positive
category. When we applied our ML algorithm to real data, we
obtained the bottom image by extracting a portion of the
spectrum from the second scan centered on the frequency value
calculated by extrapolating the frequency detected in the first
scan. If the same signal is present in both scans, the signal’s
drift in time–frequency space is approximately linear,3 and the
drift rate estimate is approximately correct, this method will
ensure that the signal also appears in the bottom image, but it
does not guarantee that the signal will be perfectly centered in
the bottom image. For instance, a small discrepancy between

the actual and estimated drift rates can result in an offset
between predicted and actual frequency values. To simulate
this scenario in our training set, we shifted all of the signals in
the bottom image of our samples by±0–5 pixels (0–15 Hz).
The exact shift for each image was randomly selected from a
distribution of shift values described in Section 4.1.
The 550,000 signals for the negative category were compiled

using five distinct procedures. The first 50,000 signals were
selected from the distribution shown in Figure 3 with a
Pbottom/Ptop ratio of <0.2. For each of these signals, we
verified the lack of any signals with a prominence value greater
than three times the standard deviation of the noise in the
bottom half of the scan. The next 125,000 negative samples
were obtained by selecting unused signals from the “positive”
range (0.75� Pbottom/Ptop� 1.25) and shifting the signal in the
bottom image by±6–10 pixels (18–30 Hz). By doing so, we
forced the algorithm to learn that a positive detection requires
the bottom signal to be detected in close proximity to the
extrapolated frequency, which is calculated on the basis of
signal properties in the top image. We obtained another
125,000 negative samples by once again selecting unused
signals from the “positive” range and replacing the bottom
signal with an unrelated signal (also sampled from the positive
range). This group of negative samples forced the algorithm to
compare signal properties and not pair two unrelated signals
that may have been detected at similar frequencies in two
different scans. Another 125,000 negative samples were
obtained by selecting leftover signals from the “positive” range
and replacing the bottom image with noise. The noise was
generated by sampling values from a χ2 distribution with four
degrees of freedom that was fit to the bottom image after
removing any power values belonging to any signals detected
in the spectrum. The signals were removed by obtaining the
database records of all signals detected within the relevant
portion of the spectrum and discarding any power values within
twice the measured bandwidth along the linear drift rate of each
signal. The final 125,000 samples were obtained similarly, but
instead of replacing the entire bottom image with noise, only
the power values belonging to the signal in the bottom image
were replaced with sample values from a χ2 distribution that
was fit to the bottom image with the same procedure as above.
An example product of each of the above procedures is

shown in Figure 4.
Before finalizing the training and train-dev sets, we

examined the drift rate distribution of the 1.1 million signals
selected with the process described above. This distribution is
biased toward signals with negative drift rates (Figure 5; left).
This bias is expected from most low- and medium-Earth-orbit
satellites, such as global positioning system satellites, which
orbit in a prograde fashion with respect to the telescope. In
order to avoid inadvertently introducing this bias into our
model, we selected 364,184 signals with a negative drift rate
using a stratified split (Géron 2019) on the signal drift rates and
horizontally flipped the images corresponding to these signals.
The resulting drift rate distribution exhibited a significantly
reduced bias between −0.5 and 0 Hz s−1 at the expense of a
slight bias between −2 and −1 Hz s−1 (Figure 5; right).
At the end of the compilation process, our training set

consisted of 550,000 positive samples and 550,000 negative
samples. The 1.1 million samples were separated into 1 million
training samples and 100,000 train-dev samples. The samples
were separated using a stratified split on the bandwidth of the

Figure 3. Distribution of the ratio of integrated powers, or the Pbottom/Ptop

ratio. The dashed orange vertical lines delimit the lower and upper bounds that
we used to select 500,000 positive samples (0.75 and 1.25, respectively). The
solid blue vertical line is plotted at a ratio of 0.2. We selected 50,000 signals
below this value to represent a portion of our negative samples.

3 The assumption of linearity is reasonable for a source analyzed at the L band
with a frequency resolution of ∼2.98 Hz, a scan duration of 150 s, and a line-
of-sight jerk below 2.311e−5 m s−3. For reference, the maximum line-of-sight
jerks for Earth’s spin and orbit are 2.453e−6 and 1.181e−9 m s−3, respectively.
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Figure 4. Sample signals used in the ML labeled training set. (a) Signal from the positive category, shifted 3 pixels (∼9 Hz) to the right. (b) Sample signal from the
negative category with a Pbottom/Ptop ratio of <0.2. (c) Sample signal from the negative category, shifted 8 pixels (∼24 Hz) to the right. (d) Sample signal from the
negative category with an unrelated signal in the bottom image. (e) Sample signal from the negative category with a bottom image consisting completely of simulated
noise. (f) Sample signal from the negative category with the primary (center) signal replaced by noise in the bottom image.

Figure 5. (Left) Drift rate distribution of the 1.1 million signals selected to be part of our training set. Note a significant bias toward signals with a negative drift rate
value. (Right) Drift rate distribution of the same set of signals after applying a horizontal flip to 364,184 negative drift rate signals. The bias that affects ∼685,000
signals between −0.5 and 0 Hz s−1 is almost entirely removed at the expense of a slight bias introduced between −2 and −1 Hz s−1 that affects ∼2500 signals.
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signals. Each set contained an equal number of positive and
negative samples.

3.5. Creation of Validation, Test, and Baseline Model
Data Sets

We compiled a small set of 1156 hand-labeled images,
where the top and bottom images are extracted from two
separate scans. These images are a true representation of the
samples that the network will see during production, so we use
them as our validation set. By comparing the model
performance on the train-dev and the hand-labeled validation
sets, we can assess whether or not there is a mismatch between
the training set and the real test data. We also compiled a set of
1272 hand-labeled images to serve as the test set. These
samples contain signals from two different scans, as would be
the case in the production environment. Finally, we selected
524 hand-labeled samples, where each sample contains a signal
in both scans, to optimize and evaluate our baseline model
(Section 4.1). This data set has no samples in common with any
of the four data sets described above.

4. Models

4.1. Baseline Model

We devised a simple correlation-based model to serve as a
benchmark or baseline for our results. We began by selecting
a baseline data set as described in Section 3.5. We then
calculated the 2D correlation coefficient between the two
signals in each data sample, using all available time steps in a
region of frequency width 2w+ 1 centered on each signal. The
correlation coefficient is given by
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where Ai and Bi are the individual pixels of images A and B; μj
and σj are the mean and standard deviation of the pixels under
consideration in image j, j ä {A, B}, respectively; and N is the
total number of pixels compared. To ensure that our results

were not influenced by poor localization of the signals in the
images, we shifted the bottom image by ±3 pixels in the
frequency dimension and computed ρ(A, B) in each case. We
report the maximum correlation score from the set of seven
resulting values. We tested both a large (w= 15 pixels,
∼50 Hz) and small (w= 3 pixels, ∼10 Hz) window size and
found that the latter gave the best results in terms of model
precision and recall.
After computing the correlation values, we selected a

threshold value in order to assign a label for each set of
images. The label is positive (i.e., “true,” 1) if the signals in the
images are strongly correlated, or negative (i.e., “false,” 0) if
the signals in the images are unrelated. Typically, this threshold
is chosen by finding the best trade-off between precision and
recall (Géron 2019). Precision is defined as the ratio of the true-
positive count (i.e., label= prediction= 1) to the sum of the
true- and false-positive counts (i.e., prediction= 1). In other
words, when a model with a precision value of 1 predicts that
an image pair belongs to the positive class, it is always correct.
On the other hand, “recall” is defined as the ratio of the true-
positive count to the sum of the true-positive and false-negative
counts (i.e., label= 1). A model with a recall value of 1 will
always correctly classify all of the positive samples. A perfect
model would have both recall and precision values of 1. In
practice, there is always a trade-off between the two metrics.
In our application, precision is more important than recall

because a larger precision value minimizes the number of false
positives. False positives represent valid candidate techno-
signature signals that were only detected in one image (or
direction of the sky) yet still classified as RFI. For this reason,
we chose our threshold as the correlation value that yielded a
precision �95%. At this threshold (0.0551), the recall was
33.7% (Figure 6). In other words, the baseline model only
detects ∼one-third of the RFI in the data, but it does so with
95% precision.
The baseline model also helped define a distribution of

frequency shifts that we used in building the training and train-
dev sets (Section 3.4.3). We selected a subset of 5750 signals
from the 2017 observations (Pinchuk et al. 2019) that passed

Figure 6. Precision and recall curves for a baseline 2D correlation model, which does not rely on ML techniques and is used solely to serve as a benchmark to evaluate
the performance improvement of our ML application (Section 5.2). With the chosen threshold, the baseline model detects approximately one-third of the RFI in the
data with 95% precision.
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the UCLA DoO filter and had correlation values that exceeded
the threshold of 0.0551. We used randomly selected values
from the distribution of shifts of this subset to shift the signals
in the second images of our training and train-dev sets
(Section 3.4.3).

4.2. Model Selection

In order to select the best suitable model for the DoO filter,
we carried out a scaled-down performance comparison of over
20 model architectures. For this comparison, we selected four
ResNet variants (ResNet34, ResNet50, ResNet101, and
ResNet152; He et al. 2016), two VGG variants (VGG16 and
VGG19; Simonyan & Zisserman 2014), and the Xception
architecture (Chollet 2017). In addition, we trained two
Siamese model variants (see Appendix B) for each of these
seven models. We did not perform any hyperparameter tuning
at this stage, and we trained each model on only 10% of the
training set, using 10% of the train-dev set and the full
validation set to evaluate the results, because the goal was to
quickly compare as many models as possible.

We found that all models outperformed their respective
Siamese versions when comparing the loss and other relevant
metrics. We also found that none of the seven standard model
architectures significantly outperformed the others in terms of
these metrics. However, we did notice that the Xception
architecture did not exhibit significant overfitting during
training, whereas all other models did. Although there are
multiple model regularization techniques designed to overcome
model overfitting, we decided to select the Xception model as
our base architecture in order to reduce the amount of model
tuning required later during training.

4.3. Hyperparameter Tuning

After selecting the best model architecture for the DoO filter,
we were left with a significant number of hyperparameters to
tune. Géron (2019) defined a hyperparameter as “a parameter
of a learning algorithm (not of the model). As such, it is not
affected by the learning algorithm itself; it must be set prior to
training and remains constant during training.” All of the
hyperparameters that were considered during this process, as
well as several suitable values for each, are listed in Table 2.

The “optimizer,” “learning rate,” “batch size,” and “activa-
tion function” hyperparameters simply refer to the network
hyperparameter that was tuned during this process. The
hyperparameter “fully connected layers on top” refers to the
addition of one or more fully connected layers of neurons
inserted immediately after the global average pooling layer but

before the final prediction node. The number of layers and the
number of neurons per layer were also tuned as part of this
process. When the hyperparameter “dropout rate” was set to
None, no changes were made to the network architecture.
Otherwise, a dropout layer (Srivastava et al. 2014) was added at
the end of the network with the corresponding dropout rate.
The hyperparameter “include squeeze-and-excitation blocks”
refers to the addition of squeeze-and-excitation (SE) blocks (Hu
et al. 2018) at the end of every separable convolution4 module
of the Xception architecture. The SE blocks are network units
that are designed to adaptively recalibrate channel-wise feature
responses by explicitly modeling interdependencies between
the channels. Hu et al. (2018) demonstrated that SE blocks
bring significant improvements in performance for state-of-the-
art CNNs with only a slight addition to the computational cost.
The “input batch normalization” hyperparameter controlled the
normalization of the input data. Specifically, if this parameter
was set to False, the input data would be normalized to zero
mean and unit standard deviation, and no further modifications
were made to the base network structure. When this parameter
was set to True, the input data were not scaled, but an extra
batch normalization layer (Ioffe & Szegedy 2015) was added
immediately after the input layer of the network.
While a comprehensive grid search for the best hyperpara-

meter combination would yield the optimal model configura-
tion, we found that hardware limitations made this approach
impractical. A single training session with only 20% of the
training data and 10 epochs, where each epoch represents a full
pass of the training data through the neural network, took
∼10 hr on a single ML-enabled graphical processing unit
(GeForce RTX 2060 SUPER 8 GB GPU), which would make a
grid search prohibitively large considering the need to examine
∼4000 combinations. With the current specifications, a grid
search for the best hyperparameter combination from the set of
values described in Table 2 would take ∼4.5 yr to complete.
Instead, we chose the best hyperparameter combination from
the results of ∼30 different training sessions of 10–15 epochs
each using judiciously chosen combinations of hyperpara-
meters. Our selection approach was “semi-greedy” because we
allowed the results of previous training sessions to have some
influence over the hyperparameter choice for the next session.
In general, we selected the hyperparameter value with the
highest classification score for subsequent trials, but we also
occasionally expanded the search space to include suboptimal

Table 2
Hyperparameters that Were Considered in This Work, as Well as the Set of Possible Values for Each and the Final Value Used for Training the Model

Hyperparameter Possible Values Final Value

Optimizer {Stochastic Gradient Descent, RMSProp, Adam, Nadam, AdaMax} Nadam
Learning rate {1e−3, 1e−4, 1e−5, 1e−6} 1e−3

Batch size {16, 32, 64, 128} 16
Activation function {ReLu, Swish} ReLu
Fully connected layers on top {True, False} False
Dropout rate {None, 0.2, 0.5} 0.2
Include squeeze-and-excitation blocks {True, False} True
Include input batch normalization {True, False} True

Note. For a definition of these concepts, see Géron (2019).

4 A convolution layer is the central building block of a CNN. It applies a
convolution kernel to each pixel of an input image and produces a feature map.
When the input image contains multiple channels (e.g., red, green, blue), the
convolution kernel has a third dimension equal to the number of channels.
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values. We emphasize that this approach includes some degree
of arbitrariness and does not guarantee a globally optimal
model configuration. Still, we found that the hyperparameter
combination obtained via this method yields a satisfactory
model performance (see Section 5.2).

The final combination of hyperparameters was determined
by comparing the model performance over all ∼30 training
sessions. The best values for each parameter are listed in the
final column of Table 2.

4.4. Final Model

Our final model architecture is shown in Figure 7. The most
important layer of the Xception architecture is the separable
convolution layer, which consists of a spatial convolution
performed independently over each channel of an input, where
a channel refers to a slice along the depth dimension of the
input matrix, followed by a 1× 1 convolution projecting the
outputs of the first convolution onto a new space. Chollet
(2017) argued that the separable convolution layer is almost
identical to an “extreme” version of the inception module,
which is the backbone of the GoogLeNet architecture (Szegedy
et al. 2015). The Xception architecture prescribes the number
of convolution kernels and output channels in each layer, as
well as the connections between layers. Some key differences
between our model and the standard Xception architecture
include a batch normalization layer in front of the network, an

extra SE layer after every residual block in the middle portion
of the architecture, and the addition of a dropout layer at the
end of the network, which we included in place of the L2
weight regularization used in the original Xception model
(Chollet 2017). The addition of such layers is frequent practice
in ML. We included only those layers that yielded the best
classification score during our hyperparameter tuning process.
We trained our final model for 25 epochs, where each epoch

was a full pass of all 1,000,000 samples in the training data
through the neural network. Model loss was calculated using
binary cross-entropy, which is a standard loss function for
binary classification problems that measures how well the
predicted class probabilities match the target class. The model
performance was monitored by calculating performance
metrics (Section 5.2) using the full train-dev and validation
sets at the end of every epoch. The training was carried out on a
single ML-enabled graphical processing unit (GeForce RTX
2060 SUPER 8 GB GPU) and took approximately 112 hr
(∼4.5 days) to complete.
All of our models were implemented using TensorFlow

(Abadi et al. 2015), and the source code to reproduce our final
model is available online.5

Figure 7. Architecture of the final model presented in this work. This figure is adapted from Figure 5 of Chollet (2017). Batch normalization and activation (ReLu)
layers that follow each convolution and separable convolution layer are omitted from the diagram. Data flow follows the arrows. The middle portion of the network is
repeated to create eight identical sections. For each layer, we list the name, kernel size, and number of output channels. Layers with a stride length of 2 instead of 1 are
distinguished by s = 2. The reduction ratio (14) of the SE layer is presented as 728:52, which denotes the number of input and output channels as a ratio of the number
of hidden layer channels (Hu et al. 2018).

5 https://github.com/UCLA-SETI-Group/doom/releases/tag/v1.0.1
(Pinchuk & Margot 2021).
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5. Results

5.1. Model Evaluation

Although we allowed some tolerance on the calculation of
the extrapolated detection frequencies in the training set
(Section 3.4.3), we found that a portion of the RFI signals in
the validation set were still misclassified as valid technosigna-
ture candidates because the signal in the bottom image was not
properly centered. Similarly, we found that a subset of signals
were misclassified because the S/N difference between the top
and bottom images was too large. These discrepancies are not
surprising because our training data were generated by splitting
a single scan into two parts, while our test data contain signals
from two completely different scans. As a result, errors on the
extrapolated detection frequencies, as well as the S/N
variability, are not as pronounced in the training data as they
are in the test data.

In order to address these issues, we applied several
additional steps when evaluating the model on the validation,
test, and production data. First, we evaluated the model
multiple times for each image pair in the validation and test
sets, applying a pixel shift in the range −4 to 4 to the bottom
image each time. The largest of the resulting nine values was
chosen as the score for that data point. The range of pixel shifts
used for this step was chosen by running this test with a larger
set of pixel shift values and choosing a symmetric range that
yielded the largest scores for ∼95% of the validation data. We
found that this step increased the validation recall from 0.859 to
0.942 for a total decrease of less than 0.1% in the validation set
precision. Then, if the score after this step was still below the
decision threshold value of 0.5, we rescaled both images so that
the new pixel values ranged from zero to the average of the
maximum pixel values of both images prior to scaling. We
found that this step further increased the validation recall from
0.942 to 0.992 while retaining a validation precision of >99%.

5.2. Model Performance

We used several metrics to evaluate the performance of our
model. First, we evaluated the precision and recall scores,
which are defined in Section 4.1. We also calculated the F1

score, which is defined as

F
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where P and R are the precision and recall, respectively.
Another important metric often used for model performance
evaluation is the area under the curve (AUC) score. In this
context, the “curve” is the receiver operating characteristic
(ROC) curve, which plots the true-positive rate against the
false-positive rate (Figure 8). We also calculated the area under
the precision–recall curve (AUPRC), as well as the average
precision (AP) of the model, which is the precision averaged
over all recall values. Together, these metrics offer a thorough
picture of the performance of all models considered in this
work. Table 3 lists the values of these metrics for the baseline
model, the existing DoO filter, and our trained CNN.

We find that our CNN significantly outperforms the baseline
model, with 99.15% precision at a recall of 97.81%, compared
to a baseline model precision of 95.08% at a recall of only
33.72%. The CNN also performs favorably with respect to the
existing DoO filter. Although the DoO filter did not admit any

false positives (100% precision) over the set of 1238 hand-
labeled signals (Section 3.2), its recall scored at only 80.68%.
This translates to a significant portion of signals left over for
manual inspection after application of the filter. The balance
between precision and recall can be summarized with the F1,
AUC, or AUPRC scores, all of which favor the CNN over the
baseline model or DoO filter. A visualization of the
performance differential between the baseline model, the
DoO filter, and the CNN is exemplified in Figure 8, which
plots the ROC curve for each model.
We note that ∼36% of the misclassifications on the test set

are attributable to signals detected in scans of TRAPPIST-1 and
LHS 1140. This percentage is appreciably larger than the total
fraction of signals from these two sources in the full test set
(∼23%). This disproportionate distribution may be due in part
to the much larger sky separation between this source pairing
(26°.3) compared to the typical angular separations between
almost all other source pairings (1°–3°), including the other
source pairings in this observation run. Specifically, the time
between the TRAPPIST-1 and LHS 1140 data acquisitions is
approximately twice as large as the mean time between data

Figure 8. The ROC curve and AUC scores for the baseline 2D correlation
model and existing DoO filter, as well as the CNN evaluated on both the
validation and the test set. The DoO curve is linear because the filter only
outputs binary scores of 0 or 1, unlike the other models, which output a score in
the range from 0 to 1 for each sample. The dashed line shows the ROC curve
for a purely random classifier with an AUC score of 0.5.

Table 3
Scoring Metrics for the Baseline Model, DoO Filter, and CNN Validation and

Test Sets

Metric Baseline Model DoO CNN Validation CNN Test

Precision 0.9508 1.0000 0.9973 0.9915
Recall 0.3372 0.8068 0.9919 0.9781
F1 0.4979 0.8931 0.9946 0.9848
AUC 0.7324 0.9034 0.9951 0.9811
AUPRC 0.6914 0.9975 0.9998 0.9982
AP 0.6921 0.9950 0.9998 0.9991

11

The Astronomical Journal, 163:76 (19pp), 2022 February Pinchuk & Margot



acquisitions of the other source pairs, a unique circumstance
that was driven by the desire to observe noteworthy exoplanets
that had been recently discovered at the time. Although the RFI
environment is expected to be stable on these timescales, the
increased time between data acquisitions of these two sources
accentuates any errors in the frequency extrapolation that we
used to center the signals in the second image. These errors
account for a major failure mode discussed in Section 6.1.2.
The increased error rate of the large-separation pairing suggests
that such pairings should be avoided when practical. This
information can help guide the design of future observing
plans.

5.3. Application to Observational Data

We applied the trained model to a subset of the data
presented by Margot et al. (2018, 2021) and Pinchuk et al.
(2019). Specifically, we evaluated the model on signals that
passed the drift rate, S/N, and bandwidth data selection filters
described in Section 3.3, as well as the existing DoO filter.
Table 4 shows the total candidate signal counts (from the first
scan of each source only) before and after application of the
DoO filter and the CNN-based filter described in this work.
Although the existing DoO performs remarkably well already,
we found that the CNN can further reduce the number of
signals left to examine by a factor of 6–16 in nominal
situations. In the atypical data set with unusually large angular
separations between sources, the reduction factor decreased
to ∼3.

We did not evaluate the CNN on the 3% of signals that did
not pass our data filters (Section 3.3) because we anticipate
poor classification performance on these signals, as they are
outside of the domain of applicability for the network.

The evaluations took approximately 5, 18, and 6 hr on the
Margot et al. (2018, 2021) and Pinchuk et al. (2019) data sets,
respectively, on a single ML-enabled GeForce RTX 2060
SUPER 8 GB graphical processing unit, i.e., several times
slower than data acquisition. This performance is promising
with respect to near-real-time data processing; the evaluation
could keep up with data acquisition with the addition of one or
more high-end graphical processing units.

6. Discussion

6.1. Failure Modes

In this section, we examine some of the CNN failure modes
that we identified by examining the test set samples that the
CNN misclassified.

6.1.1. Model-related Failure Modes

One set of failure modes falls under the category of model-
related failures, which stem from the model’s inability to learn
an adequate representation of the data and therefore correctly
classify a subset of signal types.
One such failure mode occurred when the S/N of the signal

in a data sample with S/N<∼30 was lower in the top image
compared to the bottom image. In these cases, the network
would assign the pair of images a label of “0” when there was
clearly a signal present in both. Figure 9 shows an example of
such an image pair. Note that we did not find any evidence for
the reverse failure mode—when the S/N of the signal in a data
sample is larger in the top image compared to the bottom
image. Although we did attempt to introduce S/N variations
between the two images in each sample of the training set
(Section 3.4.2), this failure mode suggests that we needed to
allow even larger variations, specifically including cases where
the S/N of the top image is substantially lower than the S/N of
the signal in the bottom image.

6.1.2. Failure Modes Related to Simplifying Assumptions

A different set of failure modes stemmed from some of the
simplifying assumptions that we made about the data. For
example, one of the failure modes is related to the frequency
extrapolation that we performed in order to center the signal in
the second image. We assumed that the frequency drift rate
would be linear, and we assumed that our estimate of the
frequency drift rate would be accurate enough to ensure
centering of the signal in the second image within a tolerance
of ∼15 Hz. Although we included this tolerance directly in the
model, during both training (Section 3.4.3) and evaluation
(Section 5.1), we still found cases where the signal was clearly
present in the second image but not properly centered.
Figure 10 (left) shows an example of such a signal from our
test set. In this case, the model gave the sample a score of
0.0193. This score yields a label of “0” (i.e., no signal in the
second scan) because it is below the decision threshold of 0.5.
However, if we shift the bottom image 5 pixels (∼15 Hz) to the
left, the score jumps to 0.7545, which yields the correct label of
“1.” Shifts of 6–10 pixels to the left all yield scores >0.99.
Unfortunately, this problem cannot be fixed by simply

increasing the range of shifts allowed for the bottom image. In
fact, it is likely that the same problem persists for any choice of
the tolerance on frequency to accept/reject a match. More
importantly, increasing the range of allowed shifts for the
bottom image would also increase the risk of removing a
technosignature candidate by pairing it with RFI detected in its
vicinity. Instead, this problem can be better addressed by

Table 4
Comparison of Filter Performance across Different Data Sets

Data Set Total Signals Applicable Signals DoO DoO + CNN

UCLA search 2016 (Margot et al. 2018, 2020a) 2,230,659 2,142,964 16,168 2772
UCLA search 2017 (Pinchuk et al. 2019; Margot et al. 2020b) 2,973,499 2,888,766 62,301 20,560
UCLA search 2018–2019 (Margot et al. 2020c, 2021) 12,779,984 12,438,375 21,978 1357

Note. The “Data Set” column includes the journal and online data references for the data sets. The “Total Signals” column lists the total number of signals from the
first scan of each source. The “Applicable Signals” column lists the total number of signals from the first scan of each source with an S/N between 10 and 600, a drift
rate in the range ±2 Hz s−1, and a bandwidth with FWHM � 100 Hz. The “DoO” column lists the number of candidate signals remaining after application of the
existing DoO filter to the subset of signals from the “Applicable Signals” column. The final column lists the candidate technosignature counts after application of the
CNN-based filter described in this work to the subset of signals that passed the existing DoO filter.
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obtaining more accurate representations of the detected signal
properties, which can then be used to more accurately localize
and thus center the signal in a subsequent scan.

Another failure mode is related to the simplifying assump-
tion that the signal power in the first half of a scan is
comparable to the signal power in the second half of a scan.
The input to the CNN is limited to approximately half of each
scan, with the scan parameters of Pinchuk et al. (2019), by
virtue of the training set configuration. Specifically, the input
images are limited to a size of 225× 225 pixels, which
corresponds to ∼75 s of observation, whereas each scan
typically lasts for a total of ∼150 s. This limitation significantly
hinders the network’s ability to identify RFI, because the CNN

only examines the first temporal half of each scan, but there are
instances where a signal is only present in the latter half of one
or both scans. An example of this case is shown in Figure 10
(middle).
We performed three preliminary attempts at mitigating this

issue. First, we tested the possibility of downsampling the scan
in the time dimension by a factor of 2, effectively allowing us
to fit partial information from 450 rows (∼150 s) into 225
pixels along the time dimension. Second, we tested an image
rescaling approach consisting of a linear interpolation (Virtanen
et al. 2020) of the entire scan duration that was sampled at 225
equally spaced time intervals. Neither approach reduced the
number of signals left to examine after application of the filter,
indicating that the issue persisted. In a third attempt, we applied
the filter a total of four times to each set of scans in the test data
set. Each filter evaluation paired a different set of temporal scan
halves (scan1,top with scan2,top, scan1,top with scan2,bottom, etc.).
We combined the results of these evaluations by taking the
maximum score across the four trials. We found that this
method did increase the recall score for the test set from
97.81% to 98.91%. However, the precision score was heavily
penalized, decreasing from 99.15% to 97.92%. This trade-off
increases the likelihood of finding additional pairings and
therefore false positives. Taking the median score across the
four trials yielded similar results. This four-execution mitiga-
tion attempt also increased the computational cost of the CNN
filter by a factor of 4. For these reasons, we did not apply this
method when evaluating the CNN on observational data.
Further investigation beyond the scope of this work is required
to minimize the impact of this failure mode.

6.1.3. Other Failure Modes

The final failure mode that we observed is related to
instances of human error in labeling the validation and test sets.
Because the labels were supplied by a single classifier (P.P.),
the margin for error on the validation and test labels is nonzero.
Figure 10 (right) shows an example of a test signal that the
CNN “misclassified.” Upon further investigation, it is clear that
the label provided with this data sample is incorrect. Although
the network technically classified this signal correctly, it
counted as a misclassification when computing model
performance (Section 5.2). This problem could be substantially
mitigated if multiple people examined and labeled the
validation and test data.

6.2. Future Improvements

Though we have attempted to thoroughly search the
parameter space for the best model to perform our classification
task, there are still a number of options to consider for future
improvements. For example, for all CNN models considered in
this work, the input was comprised of 225× 225× 2 images,
where the last dimension distinguished the top half of the first
scan from the top half of the second scan. An alternative
approach would pass the data as a single 450× 225 image,
where the top halves of each scan are concatenated in the time
dimension. It is worth investigating whether or not this variant
on the input data improves network classification performance.
Along the same lines, it may be beneficial to train a denoising
autoencoder (e.g., Xiang & Pang 2018, and references therein)
and apply it to the images prior to sending them through the
CNN. If the denoising autoencoder functions properly (i.e.,

Figure 9. Sample signal with lower S/N in the top image compared to the
bottom image. The CNN score for this image pair is 0.2706, which corresponds
to a label of “0.”
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reduces the noise around the signals in the image), it is likely
that the CNN would receive a boost in classification
performance.

During our model selection step (Section 4.2), we found that
standard network architectures always outperformed their
Siamese variants. However, those tests were performed without
any hyperparameter tuning, so it may be worthwhile to
investigate whether a tuned Siamese model still underperforms
when compared to the base architecture model. On top of that,
new state-of-the-art CNN architectures are still being rapidly
developed and may offer significant improvements over the
Xception architecture used as the final model in this work. For
example, the novel EfficientNet architecture (Tan & Le 2019),
which was published after our model selection efforts, is almost
an order of magnitude smaller and faster than other CNN
architectures, yet it has been shown to exhibit state-of-the-art
performance on the ImageNet data.

Finally, there are some improvements that can be made to
the overall training and evaluation process to mitigate the
various failure modes discovered after evaluating the CNN on
the test data. These improvements are included with the
corresponding description of each failure mode in Section 6.1.

7. Conclusions

In this work, we designed a DoO filter using modern
computer vision techniques to assist in the mitigation of RFI in
the search for radio technosignatures. We began by randomly

selecting 1,100,000 signals from a carefully selected set of over
8 million detections in order to obtain the cleanest training and
train-dev data sets possible. Both of these data sets consist of
pairs of images that were obtained by splitting a single scan
containing a signal into two parts. This approach allowed us to
label a large number of signals in a short period of time.
Using these data sets, we trained and evaluated a CNN

designed to determine whether or not the signal in the first
image is also present in the second image. This network can
therefore be applied to determine if a detected signal is
persistent in one and only one direction on the sky. This
approach is similar to the one employed by traditional DoO
filters, except that the CNN analyzes the dynamic spectra
directly instead of relying on inferred signal properties, such as
frequency and frequency drift rate.
We found that the CNN trained in this work outperformed

both the baseline 2D correlation model and the existing DoO
filters, with a precision value of 99.15% at a recall of 97.81%.
We find that the CNN can reduce the number of signals left to
analyze after applying the existing DoO filter by a factor of
6–16 in nominal situations. In the atypical data set with
unusually large angular separations between sources, the
reduction factor decreased to ∼3.
We identified several failure modes of the trained network,

labeling failures, and failures related to simplifying assump-
tions. Each failure mode can be addressed with future CNN
versions to increase the classification performance. Integrating

Figure 10. (Left) Example image pair where the signal in the second image is not centered. This occurs when the properties of the signal in the top image are
inaccurately determined. (Middle) Example of a signal that does not appear until the second half of the scan in the second image. The standard application of the
network mislabels this signal because the CNN looks at the top half of each scan only. (Right) Example signal that was incorrectly hand-labeled as “1,” seemingly
indicating that it contains a signal in the second image.
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this ML-based DoO filter into existing radio technosignature
search pipelines has the potential of providing accurate RFI
identification in near-real time.
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Appendix A
Sample Training Signals

We validated our choice for the threshold of a top-half
S/N < 6 (Section 3.4.2) by examining a sample of signals
below this cutoff value. Figure 11 depicts these signals, most of
which are faint and difficult to detect visually.
Similarly, Figure 12 depicts a sample of signals above this

threshold, which are clearly visible in the dynamic spectra.
Figure 13 shows a sample of signals from the negative

category with a Pbottom/Ptop ratio of 0.2 or lower and a
prominence value below three standard deviations of the noise
(Section 3.4.2).

Figure 11. Example dynamic spectra of signals with a top-half S/N < 6 (exact values shown above each panel). The horizontal blue line delimits the top and bottom
halves. Note that these signals (located in the center of the image starting at 0 Hz offset at time t = 0) are faint in the top half of the image and difficult to detect
visually.
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Figure 12. Example dynamic spectra of signals with a top-half S/N � 6 (exact values shown above each panel). The horizontal blue line delimits the top and bottom
halves. Note that all of these signals (starting at 0 Hz offset at time t = 0) are visually detectable in the top half of each sample.
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Figure 13. Example time–frequency diagrams of signals with a Pbottom/Ptop ratio of 0.2 or lower. The horizontal blue line delimits the top and bottom halves. No
signals with a prominence value greater than 3σ are present in the bottom halves. All of these signals represent valid negative samples.
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Appendix B
Siamese Models

The concept of a “Siamese” neural network was first
introduced in 1993 by Bromley et al. (1993) for the purpose
of signature verification. Siamese networks are defined as two
identical subnetworks that are joined at the output, typically by
subtracting the neuron values of the final layer of one model
from the neuron values of the final layer of the other model.
The input to these networks always consists of two data points,
each of which are passed to one of the two subnetworks. The
output of the Siamese networks is typically given as a similarity
score between the two data points.

During the model selection portion of this work (see
Section 4.2), we set the two identical subnetworks of each
Siamese network to be one of the architectures under
consideration (Figure 14). Each subnetwork received one scan
as input. For each architecture, we tested two methods of
joining the outputs of the final layers of the Siamese
subnetworks. Specifically, we considered the standard method

of subtracting the values of one output from the other, as well
as a generalized version of this procedure. For the latter, we
concatenated the output weights of both subnetworks and
added another fully connected layer with N nodes immediately
after the concatenated layer, where N is the number of neurons
in the output layer of the subnetwork. This method is a
generalized version of the subtraction procedure because it can
be recovered by setting the weights wij between the two layers
to be

w
i j
i j N

1, if
1, if

0, otherwise
, B1ij =

=
- = +

⎧
⎨
⎩

( )

where i and j represent the indices of the neurons of the
concatenated and fully connected layers, respectively.
Although Siamese networks seem like a promising solution

to the problem of pairing signals from two different scans, we
found that the standard network architectures always out-
performed their Siamese variants (see Section 4.2).

Figure 14. Example of a Siamese network tested in this work. The labels “A” and “B” represent input from two different scans. The “Network” in the middle was
replaced with one of the architectures that was tested in this work (see Section 4.2). The output layers were joined in two different ways. (Top right) In standard
Siamese networks, the output layers are subtracted. (Bottom right) In our generalized version, the output layers are concatenated and connected to another layer with N
neurons. Equation (B1) gives the set of weights for this configuration that reproduce the standard layer subtraction procedure.
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