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ABSTRACT

We investigate whether any multi-planet systems among Kepler candidates (2011 February release) can harbor
additional terrestrial-mass planets or smaller bodies. We apply the packed planetary systems hypothesis that
suggests all planetary systems are filled to capacity, and use a Hill stability criterion to identify eight two-planet
systems with significant gaps between the innermost and outermost planets. For each of these systems, we perform
long-term numerical integrations of 107 years to investigate the stability of 4000–8000 test particles injected into
the gaps. We map out stability regions in orbital parameter space, and therefore quantify the ranges of semimajor
axes and eccentricities of stable particles. Strong mean-motion resonances can add additional regions of stability
in otherwise unstable parameter space. We derive simple expressions for the extent of the stability regions, which
is related to quantities such as the dynamical spacing Δ, the separation between two planets in units of their mutual
Hill radii. Our results suggest that planets with separation Δ < 10 are unlikely to host extensive stability regions,
and that about 95 out of a total of 115 two-planet systems in the Kepler sample may have sizeable stability regions.
We predict that Kepler candidate systems including KOI 433, KOI 72/Kepler-10, KOI 555, KOI 1596, KOI 904,
KOI 223, KOI 1590, and KOI 139 can harbor additional planets or low-mass bodies between the inner and outer
detected planets. These predicted planets may be detected by future observations.
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1. INTRODUCTION

Early studies of extrasolar planetary systems showed residual
velocity trends in Keplerian orbit fits to radial velocity data (e.g.,
Marcy & Butler 1998; Butler et al. 1998; Marcy et al. 1999; Vogt
et al. 2000; Fischer et al. 2001), suggesting that these systems
may host additional, undetected planets. Fischer et al. (2001)
noted that about half of the stars in their sample of 12 systems
showed residual trends greater than the expected scatter due
to measurement uncertainties and stellar noise. Most of these
systems were later confirmed to harbor additional planet(s).

In more recent years, the study and prediction of undiscovered
planets have been aided by long-term N-body simulations. These
numerical investigations searched for stability zones in multi-
planet systems by integrating hundreds to thousands of test
bodies, which were injected into empty regions between known
planets (e.g., Menou & Tabachnik 2003; Barnes & Raymond
2004; Raymond & Barnes 2005; Ji et al. 2005; Rivera &
Haghighipour 2007; Raymond et al. 2008). For example, a
putative Saturn-mass planet in HD 74156 was first predicted
by Raymond & Barnes (2005) through numerical simulations
that showed a stable region between planets b and c. The planet
was later discovered by Bean et al. (2008), although there have
been questions about the validity of the detection (Wittenmyer
et al. 2009; Meschiari et al. 2011). This prediction was motivated
by the packed planetary systems (PPS) hypothesis.

The PPS hypothesis is the idea that planetary systems are
formed dynamically full and filled to capacity, and any ad-
ditional planets will cause the systems to be unstable (e.g.,
Barnes & Raymond 2004; Raymond & Barnes 2005; Raymond
et al. 2006; Barnes & Greenberg 2007). Consequently, planetary
systems with stable stability zones between the innermost and
outermost planets are suggestive of additional, yet-undetected
planets. Reasons for the non-detections of hypothetical planets

include lack of sufficient data, such as non-transiting planets that
require more data to detect them via transit timing variations,
or planetary masses/radii that are below detection limits. The
orbital properties of predicted planets can be identified through
long-term numerical simulations. Support for the PPS hypoth-
esis comes from early observations of packed multi-planet sys-
tems that led to this hypothesis (e.g., Butler et al. 1999; Marcy
et al. 2001a, 2001b; Fischer et al. 2002; Mayor et al. 2004), ap-
parent consistency between the planet–planet scattering model
and packed systems (Raymond et al. 2009), the remarkably
dense and packed Kepler-11 system (Lissauer et al. 2011a), the-
oretical work (e.g., Chambers et al. 1996; Smith & Lissauer
2009), and other investigations (e.g., Rivera & Lissauer 2000;
Goździewski & Migaszewski 2006).

In the present study, we apply the PPS hypothesis to multi-
planet candidate systems discovered by the Kepler team during
the mission’s first four and a half months of data (Borucki
et al. 2011). The Kepler mission is a transit survey designed
to search for Earth-sized planets (Borucki et al. 2010; Koch
et al. 2010; Jenkins et al. 2010; Caldwell et al. 2010) and is
sensitive to terrestrial-class and larger planets located at a large
range of separations from their host star. Kepler can detect
multiple transiting systems for densely packed planets with
nearly coplanar configurations or with serendipitous geometric
alignment, and the dynamics and statistics of Kepler multi-
planet systems are providing a wealth of information about
planetary systems (e.g., Steffen et al. 2010; Latham et al. 2011;
Lissauer et al. 2011a, 2011b).

Given that planetary systems have been discovered with
densely packed planets, we seek to test the PPS hypothesis
and predict additional planets in Kepler candidate multi-planet
systems. In Section 2, we discuss Kepler’s sample of multi-
planet systems as well as our methodology for evaluating each
planetary system’s level of dynamical packing. We also explain
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our methods for running numerical simulations and our choice of
initial conditions. In Section 3, we present the results from long-
term numerical integrations and illustrate them using stability
maps. Section 4 discusses the dynamical interpretation of our
work, in particular the relationship between planetary spacing
and the extent of an inter-planet stability region. We then
summarize the restrictions and scope of our study (Section 5)
and state our conclusions (Section 6).

2. DATA AND METHODS

Based on publicly available Kepler data covering the first
four and a half months of observations, about one-third of
∼1200 transiting planet candidates are hosted in multi-planet
systems (Borucki et al. 2011; Lissauer et al. 2011b). These multi-
planet systems include 115 systems with 2 transiting planets,
45 systems with 3 transiting planets, 8 systems with 4 transiting
planets, 1 system with 5 transiting planets, and 1 system with
6 transiting planets. Most Kepler candidate planets have not been
validated and are therefore Kepler Objects of Interest (KOI) and
assigned a number. Candidates in multi-planet systems have
a smaller probability than single-planet candidates of being
an astrophysical false positive (Ragozzine & Holman 2010;
Latham et al. 2011; Lissauer et al. 2011a, 2012). Moreover, all
of these candidate multi-planet systems are stable over long-
term integrations (Lissauer et al. 2011b). For the remainder of
this paper, we refer to all candidate planets and systems by
dropping the adjective “candidate.” All of these Kepler multi-
planet systems presented by Borucki et al. (2011) are examined
using the analytical method described below in Section 2.1.

To discern the extent of packing in Kepler multi-planet
systems, we define two types of stability as outlined by Gladman
(1993). Fulfillment or overfulfillment of these stability criteria,
meaning that the considered planetary system is not on the
verge of instability, can imply the presence of additional planets
according to the PPS hypothesis. First, Hill stability requires
that a system’s ordering of planets (in terms of distance from
the star) remains constant. This means that close approaches
are forbidden and planet crossing is not allowed for all time,
but the outer planet may be unbound and still be Hill stable.
The second type of stability is Lagrange stability, which is a
stricter definition than Hill stability. Lagrange stability requires
not only the conservation of the ordering of planets, but also that
they remain bound to the star for all time. Hill stability can be
mathematically examined for two-planet, non-resonant systems,
and Lagrange stability is typically examined through numerical
simulations. Hill stability can be a reasonable predictor of
Lagrange stability (Barnes & Greenberg 2006). In the next
two subsections, we examine Hill stability through analytical
methods (Section 2.1) and Lagrange stability through N-body
integrations (Section 2.2) for Kepler multi-planet systems.

2.1. Analytical Method

We calculate the Hill stability criterion of each adjacent planet
pair in Kepler multi-planet systems. We follow the notation
given in Barnes & Greenberg (2006) by referring to the relevant
quantities as β and βcrit:

β = −2(M∗ + M1 + M2)

G2(M1M2 + M∗M1 + M∗M2)3
L2E (1)

βcrit = 1 + 34/3 M1M2

M
2/3
∗ (M1 + M2)4/3

− M1M2(11M1 + 7M2)

3M∗(M1 + M2)2
+ · · · ,

(2)

where M∗ is the mass of the star, M1 and M2 are the masses
of the planets where M1 > M2, L and E are the total orbital
angular momentum and energy of the system, and G is the
gravitational constant (Marchal & Bozis 1982; Gladman 1993;
Veras & Armitage 2004). Two-planet, non-resonant systems
with β/βcrit � 1 are considered Hill stable. For systems with
additional planets and/or in resonance, stability needs to be
investigated numerically. A system that does not fulfill the Hill
stability criterion has unknown Hill stability; it may or may not
be Hill stable. In Equations (1) and (2), βcrit is only a function of
masses and β is a function of masses as well as semimajor axes
and eccentricities; evidently, for a given set of masses, there are
stability boundaries in orbital parameter space.

We calculate β/βcrit for each adjacent planet pair in Kepler
multi-planet systems released as of 2011 February by Borucki
et al. (2011). We find that almost all of the adjacent planet
pairs have β/βcrit values greater than 1. Raymond et al. (2009)
discussed that planet pairs with values of β/βcrit greater than
∼1.5–2 are probably capable of harboring additional planet(s)
with a semimajor axis in between those of the existing planets.
We find eight Kepler systems, all of which are two-planet
systems, with β/βcrit values of 1.5 or greater (Table 1). None of
the three-planet, four-planet, five-planet, and six-planet systems
have any adjacent planet pairs with β/βcrit values of at least 1.5.
In the next section, we place test particles in each of these eight
systems to determine their zones of stability.

Another useful criterion for evaluating stability is the dynam-
ical spacing Δ between two planets, i.e., the difference between
their semimajor axes expressed in units of their mutual Hill
radius,

Δ = a2 − a1

RH1,2
, (3)

where RH1,2 is the mutual Hill radius defined as

RH1,2 =
(

M1 + M2

3M∗

)1/3
a1 + a2

2
, (4)

(e.g., Gladman 1993; Chambers et al. 1996). Here, subscripts 1
and 2 denote the inner and outer planets, respectively.

2.2. Numerical Method

The previous section identified eight Kepler systems with
β/βcrit > 1.5 (Table 1), which suggests that these systems
are most likely to have gaps between adjacent planets that
may contain additional planet(s). For these eight systems, we
numerically explore their regions of Lagrange stability to de-
termine zones in orbital element space that can harbor ad-
ditional, undetected planets that are stable. We use a hybrid
symplectic/Bulirsch–Stoer algorithm from an N-body integra-
tion package, Mercury (Chambers 1999), with a time step that
sampled 1/20th of the innermost planet’s orbit.

For each of the eight identified Kepler systems, our simula-
tions include the star and its two detected planets as well as
4000–8000 massless3 test particles placed in between the loca-
tions of the inner and outer planets. We do not assign a common

3 It would be ideal to perform detailed integrations of numerous test bodies
with non-zero masses, distributed with varying distances and velocities from
the star to sample all possible orbits. However, this process would be very
computationally costly. Since we are investigating the stability of
terrestrial-mass planets or smaller bodies, we approximate such objects as
massless test particles in our simulations. These test particle approximations
have been similarly adopted in previous studies (i.e., Rivera & Haghighipour
2007 and references therein).
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Table 1
Identified Kepler Systems with β/βcrit > 1.5

KOI M∗ M1 R1 a1 P1 M2 R2 a2 P2 β/βcrit Δ
(M�) (M⊕) (R⊕) (AU) (days) (M⊕) (R⊕) (AU) (days)

433 1.01 37.38 5.80 0.050 4.030 209.81 13.40 0.935 328.240 2.861 28.7
72a 1.03 1.72 1.30 0.018 0.837 5.56 2.30 0.252 45.295 2.781 90.3
555 0.95 2.31 1.50 0.046 3.702 5.56 2.30 0.376 86.496 2.031 77.3
1596 0.87 5.56 2.30 0.061 5.924 13.21 3.50 0.416 105.355 1.817 53.4
904 0.69 4.61 2.10 0.029 2.211 9.61 3.00 0.159 27.939 1.624 50.4
223 0.92 7.74 2.70 0.041 3.177 6.07 2.40 0.226 41.008 1.621 56.2
1590 0.88 3.75 1.90 0.033 2.356 8.34 2.80 0.163 25.780 1.527 55.4
139 1.07 1.46 1.20 0.045 3.342 36.07 5.70 0.741 224.794 1.508 54.1

Notes. Eight Kepler multi-planet systems are identified with β/βcrit values greater than 1.5. We list their KOI identifier, stellar mass M∗, planetary masses M1 and
M2, planetary radii R1 and R2, semimajor axes a1 and a2, orbital periods P1 and P2, β/βcrit value (listed in descending order), and dynamical spacing criterion Δ.
The inner planet has the subscript 1 and the outer planet has the subscript 2. Stellar mass and planetary parameters (size, semi-major axis, and period) are taken from
Borucki et al. (2011), and we derived the planetary masses using a power law: Mi = (Ri/R⊕)2.06M⊕ where the subscript i represents planet 1 or 2 (Lissauer et al.
2011b). a KOI 72 is a confirmed system and is also known as Kepler-10 (Batalha et al. 2011).

number of test particles to each system for computational cost
reasons. The overall cost of the integration is a function of the
time step and of the number of test particles. Systems that have
inner planets with shorter orbital periods (and therefore shorter
time steps) are assigned fewer test particles so that the integra-
tions may finish within a reasonable amount of time. In total,
we integrate ∼8000 test particles per system except for KOI 72
(∼4000 test particles) and KOI 904 (∼6000 test particles). Each
system is integrated for 107 years, and test particles that survive
the length of the integration are considered stable test particles.

For each of the eight identified Kepler systems, initial
conditions for the star and its two detected planets are given
in Table 1. These initial conditions include the star’s mass and
the known planets’ masses, radii, semimajor axes, and orbital
periods. The other orbital elements of the planets—eccentricity,
inclination, argument of pericenter, longitude of the ascending
node, and mean anomaly—are currently unknown; we assume
circular and coplanar orbits and assign a random mean anomaly
for the planets. The coplanar assumption is supported by the
fact that these are all transiting planets; the larger the mutual
inclination between the planets’ orbital planes, the smaller the
probability that they all transit the star (Ragozzine & Holman
2010). Circular and coplanar orbits have the least angular
momentum deficit and therefore are most likely to be stable
configurations (Laskar 1997).

Initial conditions for test particles are as follows. Inclinations
i are drawn from a uniform distribution (0◦ < i < 5◦). Previous
work by Lissauer et al. (2011b) initially suggested that Kepler
multi-planet systems have low relative inclinations with a mean
of �5◦, but that number was revised to �10◦ as our paper was
undergoing revisions. Semimajor axis a and eccentricity e are
initially drawn from a uniform distribution (a1 < a < a2; 0 <
e < 1) for the first 1000 particles for each system. Subsequent
integrations of additional test particles were randomly inserted
into semimajor axis and eccentricity bins that had few or no
particles, by filling up bins with lower eccentricity first. This
ensured better coverage of semimajor axis and eccentricity
space. All other orbital elements (argument of pericenter,
longitude of the ascending node, and mean anomaly) are drawn
randomly from a uniform distribution between 0◦ and 360◦.

This procedure is performed for each of the eight Kepler
systems identified with β/βcrit > 1.5 (shown in Table 1). For
each system, we record each test particle’s starting orbital
elements and whether it became unstable or remained stable

during the duration of the integration. Instability can be due to
ejection or collision of the test particle with another body.

3. RESULTS

In this section, we describe the results stemming from long-
term N-body integrations of eight Kepler systems (Table 1). All
of these multi-planet systems have two known planets and were
identified in Section 2.1 as potentially capable of containing
an additional planet in the regions between the inner and outer
planets. For each of these systems, we quantify their zones of
stability and instability in semimajor axis and eccentricity space
by illustrating them in stability maps plotted in Figures 1 and 2.

Our stability maps and results indicate that each of these
planetary systems are capable of harboring a stable low-mass
body for up to 107 years in the intermediate zone between the
known inner and outer planets. We discover broad stable regions
in each planetary system, which appear as mountain-shaped
regions in Figures 1 and 2. We also find additional regions
of stability outside the mountain regions, where test particles
can have stable orbits due to mean-motion resonances with the
inner and outer planets. Strong first-order resonances with the
outer planet are marked in Figures 1 and 2. As for instabilities,
the majority (typically ∼90%) of unstable test particles were
unstable within the first 106 years.

Stable test particles do not show much movement in semima-
jor axis and eccentricity over the course of an integration. As a
result, the plots shown in Figures 1 and 2 only show the starting
locations of test particles. We quantify the motion of test par-
ticles in orbital element space by computing the median of the
absolute values of the differences between initial and final val-
ues of semimajor axis and eccentricity. The median semimajor
axis differences range from ∼3.8×10−6 AU to ∼2.3×10−4 AU,
and the median eccentricity differences range from ∼2.4×10−4

to ∼8.5 × 10−4. The largest differences in semimajor axis and
eccentricity for stable particles are commonly due to particles
placed near the edge of the stability region that became scat-
tered off to another part of the stability region, or particles
originally not in the stability region that became scattered to an
orbit with a final semimajor axis greater than the outer planet’s
semimajor axis and typically accompanied by an increase in
eccentricity.

Mean motion resonances can act as additional reservoirs
of stability outside of the mountain-shaped region. Strong
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Figure 1. Stability maps for KOI 433, KOI 72/Kepler-10, KOI 555, and KOI 1596. Test particles, shown as circles, are displayed at their starting values of semimajor
axis and eccentricity. Filled blue circles are test particles that survived the integration length of 107 years, and unfilled gray circles are test particles that did not remain
stable in that time. Black curves show the boundaries dividing planet crossing and non-planet crossing orbits. Vertical black lines represent the locations of first-order
mean-motion resonances with the outer planet. The inner and outer planets are located at the left and right edges of the plot, respectively.

(A color version of this figure is available in the online journal.)

first-order resonances are plotted in Figures 1 and 2 to provide
examples of stable test particles in resonances outside of
the stability region. Many more first-order and higher-order
resonances exist, forming a thicket of resonance locations that
are not drawn to reduce confusion. We find that the majority
of stable test particles outside the mountain are located in
resonant or near-resonant periods with that of the inner or outer
planet. Test particles placed in planet-crossing orbits (above
the black curves drawn in Figures 1 and 2) can be stable if
placed in such resonances, which protect the test particles from
close encounters with the planets. The role of mean motion
resonances in the stability of test particles and planets has
also been previously explored (e.g., see Rivera & Haghighipour
2007; Barnes & Greenberg 2007).

Our results show that massless test particles can stably orbit
in these stability regions for up to 107 years, and we suggest that
these stability results can be extended from massless particles to
Earth-mass planets. Spot checks performed for KOI 1596, which
has a moderate (for this sample) β/βcrit of ∼1.817, indicate that
an Earth-mass planet with a semimajor axis in the middle of
the stability region and with an eccentricity of zero is stable
for at least 107 years. We have also tested scenarios where we

increased the mass of the inserted planet up to a few Earth
masses, as well as cases where we inserted two, three, and four
evenly spaced, Earth-mass planets with zero eccentricities in
the main stability region. These integrations all proved to be
stable for up to 107 years in our tests for KOI 1596. As a result,
it is likely that the stability zones identified using massless
test particles are applicable to Earth-mass bodies, and that these
stability zones can potentially contain more than one Earth-mass
planet.

We briefly compare our numerical results with analytical
expectations. Our stability results based on this sample of Kepler
systems indicate that two-planet systems meeting the analytical
threshold β/βcrit > 1.5 are consistent with the idea that they can
hold additional planet(s) in intermediate separations from their
host star. All eight systems investigated here had planet pairs
with β/βcrit > 1.5 and were numerically found to be unpacked,
which supports previous work suggesting that additional planets
are expected to be stable in systems with β/βcrit > 1.5–2
(Raymond et al. 2009). Since all eight Kepler systems we
investigated with β/βcrit > 1.5 are unpacked, we expect that
there may also be additional systems with β/βcrit less than 1.5
that are also unpacked (see the next section).
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Figure 2. Same as Figure 1, except we show stability plots for KOI 904, KOI 223, KOI 1590, and KOI 139.

(A color version of this figure is available in the online journal.)

4. PLANETARY SPACING DETERMINES EXTENT
OF STABILITY REGION

We now describe in greater detail the shapes and sizes of
the mountain-shaped stability regions observed in Figures 1
and 2. In particular, we discuss the relationships between the
spacing between two planets and the extent of the stability region
in between the planets.

The stable regions in each planetary system include a
mountain-shaped stability peninsula as well as narrow strips
of stability due to mean-motion resonances (e.g., see Figures 1
and 2). The large mountain-shaped stability region has a shape
common to all of the planetary systems because it is sculpted on
the left and right flanks by specific semimajor axis and eccentric-
ity values that delineate planet-crossing orbits. Mathematically,
the mountain’s left slope is shaped by a1 = a(1 − e), where a1
is the inner planet’s semimajor axis. The mountain’s right slope
is shaped by a2 = a(1 + e), where a2 represents the outer planet’s
semimajor axis. These orbit-crossing boundaries are shown as
black curves in each stability plot in Figures 1 and 2. The actual
stability boundaries (left and right flanks of the mountain-shaped
stability region) do not extend all the way to the black curves.
This is explained by close approach effects: test particles that
are not initially on planet-crossing orbits can become unstable
if they make sufficiently close approaches to the existing plan-
ets. The critical distance from the planet-crossing boundary at

which this can occur is similar to the half-width of a planet’s
feeding zone in which planetesimals may impact the planet,
which can be estimated at about ∼2.3 Hill radii for circular or-
bits (i.e., Greenberg et al. 1991). The results of our simulations
show similar distances between the planet-crossing curve and
the actual slope of the mountain.

The maximum height of each mountain-shaped stability
region is constrained by the semimajor axes of the inner and
outer planets. The maximum eccentricity allowed is determined
by the intersection of the orbit-crossing boundaries, a1 =
a(1 − e) and a2 = a(1 + e), and serves as an upper limit to the
maximum possible height of the stability mountain. Since we
assume that the two known planets in each system have orbital
eccentricities of zero, the intersection of the curves occurs at a
semimajor axis of (a1 + a2)/2 and an eccentricity of

emax = 1 − 2a1

a1 + a2
, (5)

which is the maximum possible eccentricity emax of the stability
mountain. As is evident in Figures 1 and 2, the actual peak of
the stability region is not the same as the emax.

The actual height or peak of each mountain-shaped stability
region can be computed as follows. Consider a test particle
located between the inner and outer planets. In order to
remain stable, this particle cannot enter a zone of dynamical
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Figure 3. Maximum eccentricity for a stable test particle orbit at a semimajor
axis (a1 + a2)/2 between two existing planets. The unfilled squares represent
estimates of etop with their uncertainties, and the filled circles and gray lines
represent values of etop computed from Equation (10) for various planetary
systems (eight systems listed in Table 1 plus six additional systems for a larger
sample). For comparison, the inverted triangle shows the planetary spacing
between Jupiter and Saturn (note that we only considered two-planet systems
with circular orbits, and our results may not be applicable to systems with greater
multiplicity of planets or non-circular orbits).

influence surrounding each planet. We measure this exclu-
sion zone as a certain number ci of Hill radii RHi, where
RHi = (Mi/(3M∗))1/3ai and the subscript i = 1, 2 refers to
the inner and outer planets, respectively. Therefore, a stable test
particle’s pericenter q = a(1 − e) and apocenter Q = a(1 + e)
distances must obey

q = a(1 − e) > a1 + c1RH1 (6)

Q = a(1 + e) < a2 − c2RH2, (7)

where the inner and outer planets are assumed to have circular
orbits. We label the maximum stable eccentricity as etop (flat
top of the mountain) and consider the midpoint between the two
planets (a1 + a2)/2. We can rewrite Equations (6) and (7) for
particles on the edge of stability/instability as

(a1 + a2)

2
(1 − etop) = a1 + c1RH1 (8)

(a1 + a2)

2
(1 + etop) = a2 − c2RH2. (9)

If we subtract the two equations from each other and solve for
etop, we obtain

etop = a2 − a1 − c1RH1 − c2RH2

a1 + a2

= −c1RH1 + c2RH2

a1 + a2
+

a2 − a1

a1 + a2
. (10)

We empirically determine c1 and c2 by fitting Equation (10) in
a least-squares sense to values of etop measured from Figures 1
and 2. We find c1 = 19.733 and c2 = 4.1877. Comparison
between computed values of etop (using Equation (10)) and
the measured values of etop (from Figures 1 and 2) is shown
in Figure 3, which illustrates the maximum stable eccentricity
etop as a function of planetary spacing for a range of planetary
masses.

The width of a stability mountain’s base (where e = 0) can
be related to the dynamical spacing criterion Δ between two
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Figure 4. Fraction of planetary separation (a2 − a1) with stable test particles
at e = 0, as a function of planetary spacing criterion Δ. The unfilled squares
represent the results from numerical simulations in this study (eight planetary
systems from Table 1 plus nine additional systems for a larger sample) with
error bars representing measurement uncertainties.

planets (see Equations (3) and (4)). A system with two planets
in a circular and coplanar state satisfies Hill stability (orbits
do not cross) if Δ is greater than 2

√
3, or ∼3.46 (Gladman

1993). The stability of systems with more than two planets
is less well characterized and is commonly determined using
numerical calculations. Estimates of the width (a2 − a1)stable of
each stability mountain’s base at e = 0 (ignoring the effects
of resonances as much as possible) are related to Δ (Figure 4).
We do not find any stability regions for planetary systems with
Δ � 10.

We generalize the results shown in Figure 4 to a broader
context. From this figure, we can determine a critical value of Δ
that divides two-planet systems with stable versus no stable
regions. This crossover occurs in the range Δcrit = 10–15.
Accordingly, we suggest that two-planet systems similar to
those explored in this paper cannot have extensive stability
zones if their separations have Δ less than 10. Similarly, we
predict that stable regions can exist in systems with Δ greater
than 15. In the 2011 February Kepler release (Borucki et al.
2011; Lissauer et al. 2011b), 95 out of a total of 115 two-planet
systems have Δ > 15, or 82.6% of all two-planet systems in this
sample can potentially harbor stability zones within the known
planets. The results discussed here and illustrated in Figure 4
are consistent with previous studies. Chambers et al. (1996)
numerically studied coplanar and circular configurations of 3,
5, 10, and 20 planet systems, and found no stable systems with
planetary spacing of Δ < 10. More recently, Smith & Lissauer
(2009) examined the packing density of systems with three, five,
and nine Earth-mass planets in circular and coplanar orbits with
planets equally spaced in terms of Δ. They conducted long-term
numerical integrations up to 10 billion years, and demonstrated
that three-planet systems are stable when the spacing between
neighboring planets is roughly Δ ∼ 7. Other previous results
on spacing between planets or protoplanets include the typical
∼10 Hill radii spacing between neighboring protoplanets, as
seen in simulations of protoplanetary accretion from a swarm
of planetesimals (Kokubo & Ida 1998, 2000, 2002).

5. SCOPE AND LIMITATIONS OF OUR RESULTS

Given the large amount of possible parameter space that can
be explored in stability studies, we summarize the limitations
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and scope of results stemming from this paper. We also discuss
any other assumptions and considerations that may change our
results.

Sample. We solely investigated multi-planet systems an-
nounced by the Kepler team in the 2011 February release of
candidate systems (Borucki et al. 2011). No other planetary sys-
tems were considered. Therefore, our sample has the same biases
as any Kepler detection, including the observational preference
toward short-period planets given the transit detection method.
Our study is also limited to Kepler systems for which there are
two known planets, and we do not investigate the dynamical
spacing in systems with greater multiplicity of planets.

Masses. The planetary masses are typically not known
for these KOI systems. We estimated masses using Kepler-
measured planetary sizes with a power law (Table 1, Lissauer
et al. 2011b) obtained from fitting to Earth and Saturn. However,
the densities and true masses of Kepler planets can be different
from these assumptions, which could change our results.

Eccentricities. Eccentricity is another important dynamical
parameter that is not known for most Kepler multi-planet
systems. We have assumed zero eccentricities for the known
planets in our numerical calculations, and this assumption is
consistent with the expected tidal circularization of close-in
planets. For the only confirmed planetary system in our sample,
KOI 72 or Kepler-10, photometry and radial velocity data
suggest that Kepler-10b has zero eccentricity (Batalha et al.
2011). Non-zero eccentricities of the planets in our sample, if
present, would change the locations of stability regions of test
particles.

Inclinations. We assumed zero inclinations between the orbits
of known planets in our sample as well as low inclinations up
to ∼5◦ for test particles. Consequently, our results can only be
applied to systems that are relatively coplanar. The assumption
of coplanarity or near-coplanarity is reasonable for multi-planet
systems discovered by the transit technique at the heart of the
Kepler mission, given that the inclination dispersion of these
systems appears to have mean of �10◦.

Integration time. We integrated test particles for a time span
of 107 years due to CPU time limitations, but more accurate
modeling can be obtained by using a longer integration time
period. There may be test particles that are stable over 107 years
but not over longer timescales, although our simulations show
that ∼90% of particles unstable in 107 years were unstable
within the first 106 years.

6. CONCLUSION

The PPS model is based on the idea that all planetary
systems are formed to capacity. To test this hypothesis, we
investigated the packing density of Kepler candidate two-planet
systems from the first four and a half months of the mission.
Through numerical calculations, we determined whether regions
of stability exist between known planets with wide separations,
i.e., in systems that seemed the most unpacked based on how
well they satisfy Hill stability. Discovery of a stable region
suggests that a low-mass body could be present in the gap,
which would then bring the system to a more packed state. With
time, such predictions will be shown to be correct or incorrect,
allowing us to gauge the success of this model.

We performed detailed numerical simulations of eight two-
planet Kepler systems, selected using an analytical β/βcrit
stability criterion. In addition to the known planets, we included
4000–8000 test particles per planetary system, allowing both
circular and non-circular, and coplanar and non-coplanar orbits.

These test particles are good proxies for low-mass bodies such
as terrestrial planets as well as small bodies such as asteroids
or dwarf planets. We integrated all bodies for 107 years; we
defined stable particles as those that remained stable during the
length of the integration and unstable particles as particles that
experienced a collision or ejection.

Our results (Figures 1 and 2) indicated that all of the
planetary systems investigated here (KOIs 433, 72, 555, 1596,
904, 223, 1590, and 139) can pack additional, yet-undetected
bodies in the identified stable locations. We also discussed
relationships relating dynamical spacing between known planets
and the extent of the inter-planet stability region. We derived an
analytical relationship relating the largest possible eccentricity
of a stable test particle to the semimajor axes and Hill radii of
the two planets surrounding the particle. We also demonstrated
that Δ, the separation between two planets in units of their
mutual Hill radii, can be a reasonable predictor of whether
or not stability regions can exist between planets. The cutoff
occurs at a critical Δ between 10 and 15. We suggest that planets
with separation Δ < 10 are unlikely to host extensive stability
regions. Based on this Δ = 10–15 cutoff, we suggest that about
95 out of a total of 115 two-planet systems in the 2011 February
Kepler sample may have sizeable stability regions.

We thank the referee for useful comments.

Note added in proof. After submission of this paper, Batalha
et al. (2012) released an updated catalog of transiting planet
candidates. One of the systems studied in this paper, KOI 904,
was found to have three additional planets, two of which are in
our predicted stability zone.
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