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ABSTRACT

We develop a fourth-order numerical integrator to simulate the coupled spin and orbital motions of two rigid
bodies having arbitrary mass distributions under the influence of their mutual gravitational potential. We simulate
the dynamics of components in well-characterized binary and triple near-Earth asteroid systems and use surface of
section plots to map the possible spin configurations of the satellites. For asynchronous satellites, the analysis
reveals large regions of phase space where the spin state of the satellite is chaotic. For synchronous satellites, we
show that libration amplitudes can reach detectable values even for moderately elongated shapes. The presence of
chaotic regions in the phase space has important consequences for the evolution of binary asteroids. It may
substantially increase spin synchronization timescales, explain the observed fraction of asychronous binaries, delay
BYORP-type evolution, and extend the lifetime of binaries. The variations in spin rate due to large librations also
affect the analysis and interpretation of light curve and radar observations.

Key words: minor planets, asteroids: general – minor planets, asteroids: individual (2000 DP107, 1999 KW4, 2002
CE26, 2004 DC, 2003 YT1, Didymos, 1991 VH, 2001 SN263, 1994 CC, 1996 FG3) – planets and satellites:
dynamical evolution and stability

1. INTRODUCTION

Binary near-Earth asteroids (NEAs) are numerous in the
asteroid population. Both radar and light curve data have
shown that ∼16% of NEAs larger than ∼200 m diameter have
satellites (Pravec et al. 1999; Margot et al. 2002; Pravec
et al. 2006). It is now widely accepted that binary NEAs form
by a spin-up process (Margot et al. 2002) and that the specific
spin-up mechanism is the YORP torque (Rubincam 2000).
Binary NEA systems exhibit interesting post-fission and spin–
orbit dynamics (e.g., Ostro et al. 2006; Scheeres et al. 2006;
Fahnestock & Scheeres 2008; McMahon & Scheeres 2013)
that profoundly affect their evolution (e.g., Jacobson &
Scheeres 2011a; Fang & Margot 2012a; Jacobson
et al. 2014), but the range of dynamical regimes has not been
fully explored.

In this paper, we develop a method for simulating the
coupled spin and orbital motions of two rigid bodies with
arbitrary mass distributions. This technique is significantly
faster than a similar implementation by Fahnestock & Scheeres
(2006), because in our implementation the computationally
expensive volume integrals over the two bodies are computed
only once before the integration, as opposed to once per time
step. We use our technique to perform a survey of the dynamics
of all well-characterized binary NEA systems and map the
range of dynamical behaviors, including the spin configurations
of asteroid satellites. These results provide important insights
for modeling the physical properties of binaries and for
understanding the long term evolution of the binary systems.

The sample of well-characterized binaries includes all NEA
systems with known estimates of system mass, semimajor axis,
eccentricity, and component sizes. In practice, only systems
observed with radar fall in this class. Over 35 binary NEAs
have been observed with radar, but only about 10 have
sufficient data to yield mutual orbits and component size
estimates. We apply our technique to these systems.

Sections 2 and 3 describe the implementation of our coupled
spin–orbit integrator and cover energy and angular momentum

conservation properties. Section 4 explains different kinds of
satellite spin librations and sets up the notation used in
subsequent sections. In Section 5, we examine the spin–orbit
coupling effect and compare numerical and analytical estimates
of libration amplitudes. Section 6 introduces surface of section
plots which are used to identify resonant, chaotic, and non-
resonant quasi-periodic trajectories. We examine the trajec-
tories and spin configurations of satellites in well-characterized
binary and triple NEA systems in Section 7 and show that large
chaotic zones exist in the phase space of known asynchronous
satellites. We also compute libration amplitudes for synchro-
nous satellites. We discuss implications of the results in
Section 8.

2. NUMERICAL INTEGRATION

We numerically investigate the coupled spin and orbital
dynamics of two extended rigid objects under their mutual
gravitational influence. We neglect the translational motion of
the system barycenter and use the six first-order differential
equations of motion (EOMs) derived by Maciejewski (1995).
Here we express these EOMs in the body-fixed frame of the
primary:
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Here R and P are the relative position and linear momentum
vectors of the secondary with respect to the primary,
respectively, m = mpms/(mp + ms) is the reduced mass of the
system, where mp and ms are the masses of the primary and
secondary, respectively, V is the mutual gravitational potential,
μʼs are the torque vectors acting on the two components, Ωʼs
are their angular velocity vectors, and Gʼs are their angular
momentum vectors. Subscripts 1 and 2 denote quantities that
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refer to the primary and the secondary, respectively. Further, S
and S1 are attitude rotation matrices: the former mapping from
the secondary frame to the primary frame, and the latter
mapping from the primary frame to the inertial frame. A hat ( )ˆ
symbol above a vector specifies an operator that maps a 3-
vector (e.g., =v v v v[ , , ]x y z ) to an antisymmetric 3 × 3 matrix,
as follows:
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The term ¶ ¶RV is the gradient of the mutual gravitational
potential, which is the gravitational force (vector) between the
two components. All vectors in Equation (1) are expressed in
the body-fixed frame of the primary. However, when comput-
ing Ω̂2, one must express Ω2 in the body-fixed frame of the
secondary.

The gravitational force and torques are computed at each
time step according to the method detailed in Ashenberg
(2007). They are functions of R, S, and the inertia integrals of
the two bodies. The inertia integrals encode the mass
distribution information of a body and are of the form:

ò=I x y z dm, (3)x y z
B

p q rp q r

where dm is a mass element of body B at body-fixed
coordinates (x, y, z) and the integral is a volume integral over
the entire body. The body-fixed coordinate system is aligned
with the principal axes and its origin is at the center of mass of
B. The exponents p, q, and r are either 0 or positive integers,
such that p + q + r > 0. We use inertia integrals up to fourth
order in the integrations, where the order of an inertia integral is
given by the sum of exponents, i.e., p + q + r. The inertia
integrals depend only on the mass distribution of the object and
remain constant throughout the integration, so we compute
them only once before the integration. At each time step,
current values of R and S from the integrator are passed as
arguments to the modules that compute force and torques.

Because detailed 3D shape models of both the primary and
secondary are generally not available and their density
distributions are unknown, we model the primary and
secondary as triaxial ellipsoids (semi-axes a, b, and c) with
uniform density in this paper. These restrictions can be easily
lifted as knowledge progresses. The uniform-density ellipsoid
assumption simplifies the computation of inertia integrals
(Boué & Laskar 2009): they are zero for odd p, q, or r, and the
non-zero integrals are simple functions of principal moments of
inertia. The fourth-order inertia integrals can be found in Boué
& Laskar (2009), and the non-zero second-order inertia
integrals are listed below:
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Here, A ⩽ B ⩽ C are the principal moments of inertia of the
object about the x, y, and z axes, respectively.

We use the Cash–Karp method (Cash & Karp 1990) to
integrate Equation (1). It is a fifth-order Runge–Kutta

integrator with adaptive stepsize control which uses an
embedded fourth-order Runge–Kutta formula to compute
errors. We use the implementation provided by Press et al.
(1992) and set the fractional error tolerance to 10−15.
In all simulations, we assume a planar system, i.e., both

bodies are in principal axis rotation about their z (shortest) axes
and their equatorial planes are aligned with the mutual orbit at
all times. We start all simulations at the pericenter of the
osculating mutual orbit and with the longest axis of each body
pointing toward each other. The system parameters and initial
osculating mutual orbital parameters for all simulations are
given in Table 1.

3. ENERGY AND ANGULAR MOMENTUM
CONSERVATION

In this section, we describe results of tests designed to
evaluate the energy and angular momentum conservation
properties of the integrator. Figure 1 illustrates a representative
test run with the parameters given in the first line of Table 1.
For this test case, we used triaxial ellipsoids with principal axis
half-lengths of a = 600, b = 500, and c = 400 m for the
primary, and a = 252, b = 229, c = 190 m for the secondary.
The initial spin periods of the primary and the secondary are
2.775 hr and 32.59 hr, respectively.
The total energy is conserved at a level of 10−2 J yr−1, which

is about 10−11 times the mean orbital energy and less than 10−8

times the magnitude of the energy exchanged between the
binary components and the mutual orbit.
Angular momentum is conserved at a level of 220 kg m2 s−1

per year, which is less than 10−11 times the total angular
momentum of the system (∼1014 kg m2 s−1) and less than 10−8

times the angular momentum exchanged between the compo-
nent spins and the mutual orbit.

4. NOTATION AND LIBRATION CONCEPTS

Figure 2 illustrates the various angles used throughout the
paper. θ is the angle between the secondaryʼs long axis and the
line of apsides of the the osculating mutual orbit, and q̇ is its
time rate of change. If the apsidal precession rate were zero, q̇
would correspond to the spin rate of the satellite. The
instantaneous values at pericenter are denoted with a subscript
p: θp, q̇p. The angle θ is related to the angle between
the satelliteʼs long axis and the primary–secondary line, α,
by θ + α = f, where f is the true anomaly of the mutual orbit. At
pericenter, f = 0, so θp = −α.
Oscillations of the secondary orientation with respect to the

primary-to-secondary line are called librations. In order to
illustrate librations, let us first examine a situation in which the
amount of angular momentum exchanged between the spin of
the secondary and the mutual orbit is negligible. In this
situation, we can treat the spin and orbit to be decoupled. A
common approach to analyze the spin of the secondary is to
assume the secondary to be a triaxial ellipsoid on a fixed
Kelperian mutual orbit about a spherical primary. The
secondary spin is affected by the gravitational torques exerted
by the primary (e.g., Murray & Dermott 1999). In this
situation, the angle α is the sum of free, forced, and optical
libration angles. Free libration is easiest to understand in the
case of a circular mutual orbit and a synchronously spinning
secondary, i.e., a secondary whose average spin rate is equal to
the mutual orbit mean motion. The minimum energy
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configuration for this system is for the long axis of the
secondary to always point toward the primary, such that its
instantaneous spin rate is always equal to the mean motion. If
the secondary is disturbed from this configuration, its long axis
oscillates about the primary–secondary line due to torques
exerted by the primary on the elongated secondary. This
oscillation is called free libration and its frequency depends on
the shape of the secondary and the mutual orbit parameters.
Generally, free libration damps out on short timescales due to
tidal friction (Murray & Dermott 1999).

If the mutual orbit is eccentric, the secondary exhibits optical
and forced librations about the primary–secondary line even if
the free libration is damped out. Optical libration is the torque-
free oscillation of the long axis of a uniformly spinning
secondary about the primary–secondary line. This oscillation
would occur even in the case of a spherical secondary as the
orbital velocity varies over the course of the orbit. We use ϕ to
represent the component of α that is due to optical librations.
The amplitude of optical libration depends only on the shape of
the mutual orbit and is ∼2e, where e is the eccentricity of the
mutual orbit (Murray & Dermott 1999). In the case of an
elongated secondary, the primary exerts a periodically rever-
sing torque on it due to the misalignment of the secondary long
axis from the primary–secondary line, which results in an
oscillation of the secondary about uniform rotation called
forced libration. We use γ to represent the component of α that
is due to forced librations. Forced and optical librations have
the same frequency (equal to the mean motion). They are in
phase if w = - <B A C3( ) 10 and 180° out of phase if
ω0 > 1. We use ψ to represent the sum of forced and optical
librations, i.e., ψ = γ + ϕ, and ψA to represent the libration
amplitude.

For most binary NEA systems, a decoupled framework does
not accurately capture the system dynamics. Nevertheless, even
in the fully coupled problem around an axially symmetric
primary, the secondary exhibits libration behavior similar to the
free, forced, and optical librations of the decoupled spin
problem. There are two modes of libration in the coupled spin–
orbit problem, which we call the relaxed mode and excited
mode of libration. The relaxed mode has the same frequency as
the orbital frequency, similar to forced + optical libration in the
decoupled spin problem. The excited mode of libration has a
different frequency that depends on the shape of the secondary.
This libration mode is similar to free libration in the decoupled
spin problem. By exploring a range of initial conditions, we can
minimize the excited-mode librations so that its amplitude is
close 0°, leaving the secondary librating in the relaxed mode.
The relaxed mode disappears only when the system is in an
equilibrium state, i.e., when the mutual orbit is circular and the
long axis of the secondary always points toward the primary.
For systems in which the exchange of angular momentum in

the system is small, the coupled spin–orbit problem approaches
the decoupled problem and the relaxed-mode and excited-mode
librations become similar to the forced + optical and free
librations, respectively. Because most of our simulations
include some amount of spin–orbit coupling, we use the
relaxed/excited mode terminology as opposed to the free/forced
mode terminology of the decoupled problem.

5. EFFECT OF SPIN–ORBIT COUPLING ON LIBRATION

In this section, we study the effects of spin–orbit coupling on
the relaxed-mode libration amplitude of the secondary. Under
the assumptions of a fixed orbit around a spherical or point-
mass primary, the amplitudes of forced + optical librations
(ψA) in the decoupled case can be estimated with (e.g.,

Table 1
Simulation Parameters

Primary Secondary Mutual Orbit

Figure Object Rp ρp c ab a/b ω0 ρs a e

(m) (kg m−3) (m) (m2) (kg m−3) (m)

1 Test 493 1581 190 57,600 1.10 0.53 2618 3300 0.05
3 (1991 VH)d 600 1581 190 57,600 1.50 1.07 Various 3300 0.05
4 (1991 VH)l 600 1581 190 57,600 1.01 0.17 2618 3300 0.05
5 (1991 VH)m 600 1581 190 57,600 1.06 0.42 2618 3300 0.05
7 (1991 VH) 600 1581 190 57,600 1.50 1.07 2618 3300 0.05
8 (2003 YT1) 550 2712 88 11,025 1.30 0.88 3248 3930 0.18
9 (2004 DC) 180 1461 26 900 1.30 0.88 2000 750 0.30
10 (Didymos) 400 1955 65 5625 Various Various 2252 1180 0.04
10 (2000 DP107) 400 1791 100 22,500 Various Various 2122 2692 0.03
10 (2002 CE26) 1750 966 100 22,500 Various Various 1454 4870 0.025
10 (2001 SN263#1) 1300 996 190 52,900 Various Various 2320 3800 0.016
10 (1994 CC#1) 310 2076 48 3249 Various Various 8870 1730 0.002
10 (1999 KW4) 659 1970 190 51,076 1.30 0.88 3321 2548 0.0004
10 (1996 FG 3) 850 1300 200 60,025 1.30 0.88 1592 2535 0.07

Notes.Most physical and orbital characteristics of binary and triple NEAs are adopted or derived from Fang & Margot (2012a). Parameters for 1996 FG3 are from
Scheirich et al. (2015). Mass and radius uncertainties are ∼10% and ∼20%, respectively. See text for prescription for a, b, and c values. The first column reports the
number of the Figure illustrating the corresponding results. “Object” indicates the asteroid name or designation. The next two columns list parameters related to the
primary: Rp and ρp are the equivalent radius and mass density of the primary. The next five columns describe parameters related to the secondary (assumed to be an
ellipsoid with semi-axes a, b, and c). With our choice of simulation parameters (Section 7), it is convenient to tabulate the quantities c, ab, and the elongation a/b. The
fourth parameter describing the secondary, ω0, is related to the secondary elongation (refer to Section 4 for definition). The fifth parameter is the mass density ρs. The
last two columns give the initial osculating semimajor axis and eccentricity of the mutual orbit. For testing purposes, we use several modified versions of binary NEA
1991 VH: dfor various densities. lfor low secondary elongation. mfor moderate secondary elongation.
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Tiscareno et al. 2009):

y
w

=
-
e2

1
, (5)A

0
2

where e is the eccentricity of the mutual orbit and
w = -B A C3( )0 is the natural frequency of libration of
the satellite normalized by the mean motion (n) of the mutual

orbit. In the coupled problem, the amplitude of the librations
depends on the primary-to-secondary mass ratio, which we
quantify with our fully coupled spin and orbit integrator.
Figure 3 shows results of simulations in which we vary the

primary–secondary mass ratio for a binary system based on
NEA 1991 VH (row 2 of Table 1, nominal mass ratio ≈12).
We vary the density of the secondary while keeping other
shape parameters constant, and we use initial conditions that
make the excited-mode libration amplitude ∼0°. The corre-
sponding analytical estimates (Equation (5)) yield ψA = 37.2°
for ω0 = 1.07 and e = 0.05. At low values of the primary-to-
secondary mass ratio, the libration amplitudes are considerably
smaller than the analytical estimate, suggesting that spin–orbit
coupling tends to damp libration amplitudes.

6. SURFACE OF SECTION

It is useful to visualize the dynamics with surface of section
plots similar to those in Wisdom et al. (1984). At every
pericenter passage of the secondary, we plot the angle between
the long axis and the line of apsides of the mutual orbit, θp,
against its time derivative, q̇p, normalized by the mean motion,
n. In order to identify pericenter passage, we use Keplerian
elements to describe the osculating mutual orbit at each time
step. These elements vary on timescales shorter than the orbital
period because the orbit is not Keplerian.
It is easy to differentiate between regular and chaotic

trajectories on surface of section plots: regular trajectories fall
on smooth curves, whereas chaotic trajectories fill up an area of
the phase space over successive visits (Wisdom et al. 1984).
Figure 4 shows different types of trajectories of a slightly
elongated secondary in this phase space. The system
parameters for this plot are based on radar-derived estimates
for NEA 1991 VH (Margot et al. 2008; Naidu et al. 2012) and
are given in row 3 of Table 1. The plot looks symmetric about
θp = 90° because we use triaxial ellipsoids for the simulations,
so θp = 0° is equivalent to θp = 180°. Seven trajectories with
different initial conditions are shown in this figure. Throughout
a simulation, the secondary remains on the trajectory it started

Figure 1. Energy (top) and angular momentum (bottom) variations over the
course of 5 days for a typical binary NEA (first entry in Table 1). Lines of
different colors represent quantities associated with the mutual orbit (red), the
primary spin (green), the secondary spin (blue), and the sum of all three
(black).

Figure 2. Illustration of the osculating mutual orbit and notation for angles.

Figure 3. Influence of spin–orbit coupling on relaxed-mode libration
amplitude. Plus symbols (connected by a solid line) show amplitudes of
relaxed-mode libration as a function of primary-to-secondary mass ratio.
Dotted–dashed line shows corresponding analytical estimates of forced +
optical libration computed using Equation (5). System parameters for this
simulation are based on asteroid 1991 VH and are given in the second row of
Table 1. The elongation of the secondary, a/b = 1.5, corresponds to ω0 = 1.07.

4

The Astronomical Journal, 149:80 (11pp), 2015 February Naidu & Margot



on. The red and green trajectories are regular quasi-periodic,
whereas the blue trajectories are chaotic.

On a resonant (red color) trajectory, the secondary librates in
a spin–orbit resonance region. For the red trajectory surround-
ing q =n˙ 1.5p , the secondary spins three times for every two
orbits, so it is in a 3:2 spin–orbit resonance. Mercury is the only
known object in a 3:2 spin–orbit resonance. For the red
trajectory surrounding q =n˙ 1p , the secondary is in a 1:1 spin–
orbit resonance, i.e., it spins synchronously (e.g., the Earthʼs
Moon). Similar trajectories with islands centered exclusively
on θp = 0° and θp = 180° exist near half-integer values of q nṗ

(2, 2.5, 3, etc). The horizontal extent of the trajectory around
θp = 0° gives the amplitude of excited-mode libration
(equivalent to free libration in the decoupled spin problem).
For example, on the red trajectory in the 1:1 resonance region,
the secondary has an excited mode libration amplitude of ∼37°.
A trajectory with only relaxed-mode libration plots as a point
on the y-axis, which we call the center of the resonance region
(not shown in the figure). The relaxed-mode libration is not
detectable in the horizontal dimension of the surface of section
plots because we sample the spin state of the secondary at
pericenter, where the relaxed-mode libration is always at 0°
phase. However, the relaxed-mode libration is detectable in the
vertical dimension of the surface of section plots because it
contributes to the angular velocity of the secondary at
pericenter. The centers of the resonance regions are displaced
vertically from their nominal positions in the absence of
relaxed-mode libration. These offsets can be seen clearly for
relaxed-mode librations with larger amplitudes (Figures 7 and
8). They are strictly due to torques on the permanent
deformation of the satellite and are unrelated to the tidally
induced pseudo-synchronous rotation described by, e.g.,
Ferraz-Mello (2013) for nearly spherical satellites on eccentric
orbits.

A chaotic (blue color) trajectory marks the boundary of a
resonance region and is called a separatrix. On a separatrix the
secondary explores the entire range of θp values and the
trajectory fills up a region of phase space, indicating that the
trajectory is chaotic.

Secondary spin rates that are further away from the
resonance regions put the secondary on a trajectory similar to
one of the non-resonant quasi-periodic (green) trajectories. On
these trajectories the secondary is not in a spin–orbit resonance
and circulates through all θp values in a quasi-periodic manner.
These trajectories are called quasi-periodic because they exhibit
at least one non-commensurate frequency in addition to the
frequency at which the motion is sampled.
Wisdom et al. (1984) assumed that the secondary spin is

decoupled from the mutual orbit, a reasonable assumption for
the Saturn–Hyperion system because Hyperion has negligible
angular momentum compared to the mutual orbit. Under this
approximation, they derive the half-widths of the resonance
regions (Equation (6), in units of the mean motion) and of the
chaotic separatrix surrounding the 1:1 spin–orbit resonance
(Equation (7), in the energy domain):

w= H p e
1

2
RW ( , ) ; (6)0

w
=

D
» w-E

E

πe
e

1

2
SW

14
. (7)( )π

0 0
3

2 0

Here, H are functions tabulated in Cayley (1861) and p is the
spin–orbit resonance ratio, e.g., p = 3/2 for a 3:2 spin–orbit
resonance. ΔE represents energy variations on the chaotic
separatrix and E0 comes from the first integral of the averaged
equation of motion of libration (Wisdom et al. 1984). It is the
energy at which the libration angle begins to circulate:

w=E n C
1

4
, (8)0

2
0
2

where C is the moment of inertia about the spin axis. In the
averaged equation of motion, the higher frequency terms that
give rise to chaos are ignored, so the separatrix is regular.
The width of the resonance and of the chaotic regions grow

larger with ω0 and e. For large enough values, neighboring
resonance regions overlap, resulting in a large chaotic zone
surrounding the overlapping resonances. The resonance over-
lap criterion for the 1:1 and 3:2 spin–orbit resonances is given
by (Wisdom et al. 1984):

w =
+ e

1

2 14
. (9)0

RO

Overlap occurs when w w>0 0
RO.

These equations were derived under the assumption that the
secondary spin has no feedback on the mutual orbit, and we
investigate whether the analytical formulation (Equation (9))
matches the results of our coupled integrator. For a system
based on 1991 VH (Table 1), we varied the elongation in steps
of 0.01 and determined when resonance overlap occurred. We
find that it does not occur for a/b = 1.03 (ω0 = 0.30) but that it
does occur for a/b ⩾ 1.04 (ω0 ⩾ 0.34). The analytical estimate,
which does not take the width of the separatrix into account,
places the onset of chaos at w0

RO = 0.35 for e = 0.05. The
small difference between the analytical and numerical estimates
for the onset of chaos suggests that Equation (9) provides a
reasonable approximation even in the presence of spin–orbit
coupling. In subsequent sections, we will confirm this finding
by providing values for both estimates for a variety of orbital
eccentricities. Note that Wisdom et al. (1984) also observed a
small difference between analytical and numerical estimates,
even in the fully decoupled case. To illustrate resonance

Figure 4. Surface of section plot for a secondary elongation a/b = 1.01,
corresponding to ω0 = 0.17, and mutual orbit eccentricity e = 0.05. Other
system parameters are listed in Table 1. Seven trajectories with initial q nṗ

values of 1.08, 1.15, 1.28, 1.55, 1.57, 1.68, and 1.78 are plotted. Initial θp
values are 0 in all cases. Red, blue, and green colors indicate resonant, chaotic,
and non-resonant quasi-periodic trajectories, respectively.
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overlap, we generate a surface of section for a value of
a/b = 1.06 and e = 0.05 such that ω0 = w>0.42 0

RO = 0.35
(Figure 5). The overlap wipes out the non-resonant quasi-
periodic trajectories between the overlapping resonances and
results in smaller 1:1 and 3:2 spin–orbit resonance regions and
a large chaotic zone surrounding the resonances.

Substituting e = 0 in Equation (9) yields w0
RO = 0.5 which

corresponds to a/b ≈ 1.09. This value is low compared to
typical elongations observed in asteroids (e.g., Hudson &
Ostro 1995; Hudson et al. 2000; Naidu et al. 2013). The
secondary of 1999 KW4 has an elongation of 1.3 (Ostro
et al. 2006). This suggests that resonance overlaps are quite
likely to happen in binary NEAs. However, for small
eccentricities the width of the chaotic separatrix remains small
as dictated by Equation (7), so resonance overlaps do not result
in large chaotic regions. The resonance overlap threshold of a/b
as a function of e (Equation (9)) and the width of the chaotic
separatrix (ΔE/E0) as a function of e and a/b (Equation (7))
are plotted in Figure 6. The figure illustrates that the size of the
chaotic zone increases with eccentricity.

In the next section, we examine the surface of section plots
for well-characterized binary and triple systems.

7. WELL-CHARACTERIZED BINARY
AND TRIPLE NEA SYSTEMS

We simulate the spins and orbits of well-characterized
binaries and triples listed in Fang & Margot (2012a), which
includes both synchronous ( qá ñ =n˙ 1) and asynchronous
( qá ñ ¹n˙ 1) systems, where á ñ. indicates values averaged over
one orbit. We use our integrator to determine the minimum
elongation at which resonance overlap occurs and, for
synchronous satellites, the amplitude of relaxed-mode libration.
We also plot surfaces of section for each system to examine the
variety of dynamical regimes. When satellite elongations are
not known, we assume a value of 1.3, which corresponds to
that of the 1999 KW4 satellite. Equivalent radii for the
components and mutual orbital parameters are obtained from
Fang & Margot (2012a), unless otherwise indicated.
In all cases, we assume the primaries to be spherical and the

secondaries to be triaxial ellipsoids. We need a prescription for
choosing the axial dimensions such that they conform to the
radius and mass of the secondary described in the literature. a
and b are chosen to satisfy two conditions: (1) a × b = Rs

2,
where Rs is the radius of the secondary, and (2) a/b equals the
desired elongation. c is chosen in a way that ensures A < B < C.
The choice of c is not crucial because the dynamics are mostly
sensitive to the value of w = -B A C3( )0 which, for a

triaxial ellipsoid, is equal to - +a b a b3( ) ( )2 2 2 2 ). The
adopted density of the satellite is based on the observed mass of
the satellite and on the volume of the triaxial ellipsoid. Because
the choice of c is arbitrary, the densities used in the simulations
are not identical to the nominal densities, but the masses used
in the simulations do conform to the nominal masses. We
verified the robustness of our results by running simulations
with up to 20% changes in the values of c and found no
appreciable difference in the surface of section plots.

7.1. 1991 VH

As mentioned in Section 6, the overlap of the 1:1 and 3:2
spin–orbit resonances of the 1991 VH secondary happens for
a/b > 1.04. Radar images show that its equatorial elongation is
about 1.5 (Naidu et al. 2012). Figure 7 shows a surface of
section plot for e = 0.05 and a/b = 1.5 (other parameters are
listed in Table 1). At these values, the chaotic zone completely
wipes out the 3:2 spin–orbit resonance but a large stable 1:1
spin–orbit resonance region still exists. The center of the
sychronous region (as defined in Section 6) is on the y-axis in
Figure 7, in the region bounded by the smaller red trajectory
close to q =n˙ 0.5p . It is shifted down from q =n˙ 1p due to
relaxed-mode libration which makes a non-zero contribution to
q̇ at pericenter. We measure the relaxed-mode libration
amplitude at the resonance center to be about 35°.
The synchronous region is surrounded by a chaotic zone.

This has implications for synchronous capture that are
discussed in Section 8. If the secondary gets captured in the
synchronous region, tides are expected to damp the excited-
mode libration of the secondary, driving its trajectory toward
the center of the synchronous region, where it exhibits only
relaxed-mode libration. Since the spin is coupled to the orbit,
energy removed from the secondary spin will gradually change
the orbit, the surface of section map, and the relaxed-mode

Figure 5. Surface of section plot illustrating the partial overlap of the 1:1 and
3:2 spin–orbit resonances for a secondary elongation a/b = 1.06, corresponding
to ω0 = 0.42, and a mutual orbit eccentricity e = 0.05. Other system parameters
are given in Table 1. Four trajectories with initial q nṗ values of 1.13, 1.63,
1.70, and 1.78 are plotted. Initial θp values are 0 in all cases. Color scheme as in
Figure 4.

Figure 6. Contour plot showing the half-width of the chaotic separatrix ΔE/E0

as a function of a/b and e (Equation (7)). According to the resonance overlap
criterion of Equation (9), overlap will occur in systems that lie above the
solid line.
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libration amplitude and frequency. Throughout this evolution,
the secondary remains in the same dynamical regime close to
the center of the synchronous region. The next higher order
stable resonance is the 2:1 resonance, however probability of
capture into this resonance is low (∼10−3 using equation
(5.110) of Murray & Dermott 1999). Similar to the
synchronous region, the 2:1 resonance region is shifted
vertically from q =n˙ 2p . The shift in this case is upwards
because the instantaneous satellite spin rate at pericenter is
greater than its orbit-averaged value of 2n.

Preliminary measurements of the Doppler extents (or
bandwidths) of the secondary in radar images (Margot
et al. 2008; Naidu et al. 2012) are consistent with chaotic
behavior, but because of the large amplitude libration at the
resonance center and corresponding spin rate variations
(Section 8.2), we cannot entirely rule out the possibility of
synchronous spin.

7.2. 2003 YT1

This systemʼs component sizes are Rp ≈ 550 m and Rs ≈
105 m, so the primary is similar to that of 1991 VH but the
secondary is a few times smaller. The orbit (a/Rp ∼ 7) is
somewhat wider than that of 1991 VH (a/Rp ∼ 5.5), and it is
also more eccentric (e = 0.18 versus e = 0.05). The smaller
secondary and wider mutual orbit mean that spin and orbit are
less coupled in this system than in 1991 VH. Substituting
e = 0.18 in Equation (9), we get a theoretical threshold for
resonance overlap w0

RO = 0.30, which corresponds to
a/b = 1.03. Using our simulations we find that the resonance
overlap threshold lies between ω0 = 0.24 (a/b = 1.02) and
ω0 = 0.30 (a/b = 1.03). The elongation of the satellite is
unknown. For our simulations (Figure 8), we chose an
elongation of 1.3.

The 1:1 spin–orbit resonance region is not as prominent in
this plot as it is in Figure 7 due to the higher eccentricity.
Despite the higher eccentricity, the y-axis location of the
synchronous region center is similar to that of 1991 VH,
because of the smaller satellite elongation. The chaotic region
is much bigger than that of 1991 VH and extends to q »n˙ 3p .
The first higher order stable resonance is the 5:2 spin–orbit

resonance. This resonance region is shifted upwards from
q =n˙ 2.5p , similar to the upward shift of the 2:1 resonance
region of 1991 VH. The amplitude of the relaxed-mode
libration measured at the center of the synchronous region is
about 45°.

7.3. 2004 DC

2004 DC has the smallest primary (Rp ≈ 180 m), secondary
(Rs ≈ 30 m), and mutual orbit semimajor axis (750 m) in our
sample, but it has the most eccentric mutual orbit (e ≈ 0.3)
(Table 1). The resonance overlap criterion (Equation 9) gives
w0

RO = 0.25, which corresponds to an elongation of a/b = 1.02.
Using our simulations we find that the resonance overlap
threshold lies between a/b = 1.01 (ω0 = 0.17) and 1.02
(ω0 = 0.24), roughly consistent with the analytical estimate.
The shape of the secondary is not known, however its
appearance in the radar images suggest that a/b ⩽ 1.3 (Patrick
Taylor 2014, private communication). Figure 9 shows the
surface of section plot for a secondary having an elongation of
1.3 (system parameters in Table 1). The chaotic region is so
large that even the 1:1 resonance region disappears and the
lowest-order stable resonance region is the 4:1 spin–orbit
resonance. In fact the synchronous island is absent for all
values of satellite elongations ⩾1.1.

7.4. Synchronous Satellites

Radar data show that the satellites of 2000 DP107, 2002
CE26, 2001 SN263 (Gamma), 1999 KW4, and 1994 CC
(Beta) are synchronous (Margot et al. 2002; Ostro et al. 2006;
Shepard et al. 2006; Nolan et al. 2008; Brozović et al. 2011,
respectively). Didymos may also be synchronous (Benner
et al. 2010); for our purposes we assume that it is. Scheirich et
al. (2015) found that 1996 FG3 is synchronous. We use radar-
derived mutual orbital parameters, component radii, and
component masses for simulating these systems. These
parameters are given in Table 1. For satellites whose
elongations are not well known, we perform simulations using
a/b = 1.01, 1.05, 1.1, 1.2, and 1.3. Each simulation is
performed with initial conditions that put the trajectory at the
center of the synchronous island. We identify the center of the
synchronous island by varying the values of initial q̇ until the
horizontal extent of the trajectory on the surface of section
becomes ∼0. As mentioned in Section 7.1, the excited-mode
libration amplitude is zero at the center of the synchronous
island, which is what is expected for a tidally evolved satellite.
In this case, the satellite exhibits only the relaxed-mode
libration, which we measure as the angle between the long axis
of the secondary and the line joining the primary and secondary
centers of masses (in the decoupled terminology, this is the
optical + forced libration). The libration amplitudes, i.e., the
maximum values of the libration angles, are plotted as a
function of elongation in Figure 10. The analytical estimates of
the libration amplitudes, assuming the decoupled spin–orbit
problem, are given by Equation (5).
Since shape and spin state modeling are tied to each other

(e.g., Ostro et al. 2006; Naidu et al. 2013), calculations such as
those shown in Figure 10 are useful for shape modeling of
asteroid satellites. These estimates are also useful for modeling
binary YORP torques (Ćuk & Burns 2005) on synchronous
satellites. If a system exhibits excited-mode libration in
addition to the relaxed-mode libration, the two librations will

Figure 7. Surface of section plot for the 1991 VH secondary using the radar-
derived secondary elongation a/b = 1.5, corresponding to ω0 = 1.07, and the
mutual orbit eccentricity e = 0.05. Other system parameters are given in
Table 1. Five trajectories with initial q nṗ values of 0.43, 0.83, 1.63, 2.31, and
2.53 are plotted. Initial θp values are 0 in all cases. Color scheme is the same as
in Figure 4.
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add up and create a beating pattern. Because the amplitudes and
frequencies of excited-mode libration can span a wide range of
values, 3D reconstruction and binary YORP modeling of
dynamically excited satellites is complicated.

8. IMPLICATIONS

8.1. Presence of Chaotic Regions and Synchronous Capture

In Section 7, we showed that resonance overlap is likely to
occur for asynchronous satellites in our sample and that large
chaotic zones are expected in their phase spaces. This behavior
can be expected in other, similar systems. Let us consider the
evolution of a satellite formed with a high initial spin rate such
that its trajectory in phase space is in or above the chaotic zone,
the situation expected for most satellites in the formation model
of Jacobson & Scheeres (2011a). It is possible for YORP to
increase the spin rate of the satellite, but we focus on the spin-
down evolution under the influence of tidal and YORP forces.
Satellites that start above the chaotic region will most likely
encounter the chaotic zone on their way to the 1:1 spin–orbit
resonance region. In the chaotic zone, the satellite is acted upon
by tides, YORP, and torques on its permanent shape, which
cause the chaotic spin. Since the spin of the satellite is coupled
to the mutual orbit, angular momentum removed or added to
the secondary spin by tides and YORP will also affect the
mutual orbit and cause the surface of section map of the
secondary to vary. However, for binary NEAs, the angular
momentum of the mutual orbit is much greater than that of the
secondary spin, so the effect is expected to be small. We
neglect this effect for the following discussion and assume the
surface of section map to be roughly constant during the
evolution of the secondary spin in the chaotic zone.

If the chaotic separatrix around the 1:1 spin–orbit resonance
region is extremely thin, as is the case for satellites having
almost spherical shapes, then the torques on the permanent
shape will be small, allowing tides or YORP to easily drive the
satellite spin across the separatrix and into the synchronous
region. For satellites having larger chaotic zones, like the
asynchronous satellites in Section 7, tides or YORP cannot

simply sweep the satellite across the chaotic region because
torques on the permanent shape can increase as well as
decrease the spin rate of the satellite in a random manner. The
synchronous capture process is essentially stochastic in nature.
For capture to occur, the satellite has to spend enough time near
the boundary of the synchronous region for tides or YORP to
torque the satellite into resonance. Such a process was
discussed by Wisdom et al. (1984). The details of this capture
process are not known and are difficult to model, however the
probability of this happening will depend on the relative
magnitude of ΔE/E0 compared to the energy dissipated due to
tides (δEtides/E0) or YORP (δEYORP/E0).
Simulations and Equation (7) show that values of chaotic

spin energy variations (ΔE/E0) for the asynchronous satellites
are within an order of magnitude of 1. We estimate the

Figure 8. Surface of section plot for the 2003 YT1 secondary assuming the
secondary elongation a/b = 1.3, corresponding to ω0 = 0.88, and the mutual
orbit eccentricity e = 0.18. Other system parameters are given in Table 1. Six
trajectories with initial q nṗ values of 0.75, 1.29, 2.85, 3.15, 3.5, and 3.69 are
plotted. Initial θp values are 0 in all cases. Color scheme is the same as in
Figure 4.

Figure 9. Surface of section plot for the 2004 DC secondary assuming the
secondary elongation a/b = 1.3, corresponding to ω0 = 0.88, and the mutual
orbit eccentricity e = 0.3. Other system parameters are given in Table 1. Four
trajectories with initial q nṗ values of 1.39, 4.29, 4.49, and 5.39 are plotted.
Initial θp values are 0 in all cases. Color scheme is the same as in Figure 4.

Figure 10. Numerical estimates of relaxed-mode libration amplitude as a
function of satellite elongation for synchronous satellites among well-
characterized binary and triple systems. For 1999 KW4 and 1996 FG3, we
plot single points corresponding to the known elongations of the satellites. The
libration amplitude of 1996 FG3 is an upper limit based on an eccentricity
of 0.07.
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magnitude of tidal dissipation in one orbit using the following
Equation from Murray & Dermott (1999):

d =E π
k

Q

n

G
R

3

2
. (10)tides

2
4

s
5

Here k2 is the Love number, Q is the tidal dissipation factor, n
is the mean motion, G is the gravitational constant, and Rs is the
radius of the secondary. We approximate energy dissipation
due to YORP in one orbit by multiplying the YORP torque
given in Steinberg & Sari (2011) by the satellite rotation over
one orbit, 4π assuming two satellite rotations per orbit:
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Here L is the solar luminosity, fY is the YORP torque
efficiency, c is the speed of light, d and e are the semimajor
axis and eccentricity of the heliocentric orbit, respectively. In
order to compare the tidal and YORP energy dissipation with
ΔE/E0, we normalize δEtides and δEYORP using E0 from
Equation 8.

For computing δEtides we assume Q = 100 and estimate k2
values using three different models. In the rubble pile model of
Goldreich & Sari (2009), k2 = 10−5Rs, where Rs is in km.
Using the system parameters from Table 1, we determine
δEtides/E0 for all the asynchronous satellites to be between 10−9

and 10−8. Assuming the monolith model of Goldreich & Sari
(2009) for the secondary yields lower values of δEtides because
a monolith is more rigid than a rubble pile of the same size and
has a lower value of k2. Jacobson & Scheeres (2011b) derived
a different relation between Love number and radius, k2 =

´ - -R2.5 10 5
s

1, by assuming that orbits of observed synchro-
nous asteroid satellites are in an equilibrium state such that tidal
torques balance binary YORP torques. Subsituting k2 values
from this relation in Equation (10) yields δEtides/E0 between
10−7 and 10−5. We compute δEYORP by assuming fy = 5 × 10−4,
the estimated value for asteroid YORP (Lowry et al. 2007;
Taylor et al. 2007). δEYORP/E0 values for 1991 VH, 2003 YT1,
and 2004 DC are 5 × 10−7, 3 × 10−6, and 2 × 10−5, respectively.

Unknown values of Q, k2, and fy introduce uncertainties of a
few orders of magnitude in δEtides and δEYORP but these energy
dissipation values are several orders of magnitudes smaller than
ΔE/E0, suggesting that chaotic variations in energy dominate
tidal and YORP dissipations in these systems. This may
substantially delay spin synchronization and, therefore,
BYORP-type evolution.

If the timescale for synchronous capture is long, then tides
may damp the mutual orbit eccentricity significantly before
spin synchronization. This will reduce the size of the chaotic
zone as dictated by Equation (7) and make it easier for tides or
YORP to torque the secondary into the synchronous region.
Tidal damping of eccentricity is not a very effective process
and timescales may be quite long. Fang & Margot (2012a)
estimated timescales in the range 107–1010 years for the
asynchronous satellites, but these may be in error because the
underlying formalism by Goldreich (1963) assumes synchro-
nous rotators. It is likely that energy dissipates faster in the case
of satellites that are torqued and tidally deformed in a chaotic
manner, but the nature and characteristic timescale of the
eccentricity evolution remain poorly known. Complicating the
picture is the fact that other mechanisms such as solar
perturbations (Scheeres et al. 2006) or planetary flybys

(Farinella 1992; Fang & Margot 2012b) may also be effective
at damping or exciting eccentricities. Although there is
uncertainty related to the eccentricity-damping timescale,
BYORP-type evolution cannot take place until the spin period
is synchronized to the orbital period. Asteroid binaries may
enjoy extended lives because their chaotically spinning
secondaries prevent BYORP evolution.

8.2. Interpretation of Observational Data

Our results have implications for radar and light curve data
interpretation. In radar observations (images and spectra), the
Doppler extent (or bandwidth) of an object is proportional to
its apparent, instantaneous spin rate (inversely proportional to
its spin period). Light curves show variations in the objectʼs
brightness as it spins. If the object is spinning at a constant rate,
the brightness variations will be approximately periodic. The
primary periodicity in the light curve (e.g., Pravec et al. 2006)
is often used as a proxy for the objectʼs spin rate, even though
the signal is affected by changes in relative positions between
the Sun, the object, and the observer. We showed in Section 7
that asteroid satellite spin rates can be time-variable. When the
light curve data are of sufficient quality and when Rs/Rp  0.2,
it is sometimes possible to distinguish the signal of the
secondary from that of the primary. In radar data, where the
secondary is typically easily detectable, the spinning satellite
will exhibit approximately periodic bandwidth variations.
However, in both cases, a variable spin rate severely
complicates the analysis. Understanding the time-varying
nature of the satellite spin is important when analyzing radar
and light curve data.
Figure 11 shows spin rate as a function of time for four

trajectories of 1991 VH. The top panel shows a trajectory at the
center of the synchronous island. Even though it would plot as
a point on a surface of section, the satellite spin rate exhibits a
large oscillation at the orbital rate with an amplitude slightly
greater than the mean motion, n. As mentioned in Section 6,
this oscillation is the relaxed-mode libration of the satellite.
The second panel in Figure 11 shows a chaotic trajectory.

The spin rate variations span a similar, but slightly larger, range
of values than that in the synchronous case. If observations
(radar or photometric) were sparse, it would be difficult or even
impossible to ascertain whether a trajectory was periodic or
chaotic. With a sufficient number of data points sampled at a
sufficiently fast cadence, one could examine the distribution of
spin rate values to identify the type of trajectory, as the
distributions for resonant and chaotic trajectories are different.
Spin rate variations on the synchronous trajectory resemble a
sinusoid, so the distribution of spin rates looks approximately
bimodal. The spin rate distribution of the satellite in the chaotic
region cannot be generalized and depends on specific system
parameters.
The third and fourth panels show the 3:2 resonant trajectory

(red) and the quasi-periodic (green) trajectory of Figure 7,
respectively. In these cases, the variations are much smaller
than the previous two trajectories. These rotational regimes are
easier to identify because large-scale chaotic variations are not
present.
In radar data analysis, modeling the spin state and shape of

objects are tied to each other (e.g., Ostro et al. 2006; Naidu
et al. 2013). Incorrect spin state assumptions may yield
incorrect shape models. Our results indicate that in some cases
it will be impossible to identify the spin state of the satellite,
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whereas in other cases an appropriate rotational model will
provide a good fit to the data. A simple model of uniform
rotation may not be sufficient, as libration amplitudes can cause
displacements that exceed the image resolution. We recom-
mend using a model that includes librations for the 3D
reconstruction of asteroid satellites with even moderate
eccentricity and elongation.

9. CONCLUSIONS

We examined the rotational regimes of asteroid satellites
using surfaces of section. The trajectories can be broadly
classified as resonant, non-resonant quasi-periodic, and chaotic.
In order to identify the specific type of spin behavior, a dense
time sampling of the satellite spin state is necessary
(Section 8.2), however such data sets are seldom available.
Even densely sampled light curves, for instance, do not yield
measurements of the instantaneous spin state due to the
necessity of observing ∼1 full period to estimate the spin
period. In Section 8.2, we showed that even synchronous
satellites can undergo large variations in spin rates, potentially
masquerading as asynchronous satellites. Careful analysis of
the data along with coupled spin–orbit simulations can be used
to correctly identify the spin behavior. Identifying the spin
configurations is essential for obtaining accurate physical
models of the satellites.
The spin configurations of satellites play a crucial role in the

secular evolution of binary/triple systems under the influence of
forces such as tides and binary YORP. For example, the binary
YORP torque acts only on satellites whose spin periods are
integer multiples of their orbital periods (Ćuk & Burns 2005)
and some estimates suggest that this torque could disrupt
binary systems in just a few tens of thousands of years (Ćuk &
Nesvorný 2010; McMahon & Scheeres 2010). Thus under-
standing the process of spin synchronization is essential for
understanding the evolution of binaries. In Section 8.1, we
showed that satellites may have significantly longer spin
synchronization timescales than those estimated by considering
tidal and/or YORP forces only. This would increase the
fraction of asynchronous binaries in the observed population
beyond what one would expect on the basis of tidal despinning
timescales. The corresponding delay in the onset of binary
YORP implies that the lifetimes of binary asteroids can be
significantly longer than the few tens of thousands of years
suggested by binary YORP models.

10. FUTURE WORK

We examined the results of spin–orbit coupling in the planar
case. However, Wisdom et al. (1984), using 3D simulations,
showed that seemingly stable configurations in planar simula-
tions can be attitude unstable. Future work will involve
studying inclined/oblique binary systems in order to test the
attitude stability of satellites in various regions of phase space.
Our integrator can also be used for studying the secular
evolution of binary asteroids. This will require implemention of
radiation pressure and tidal forces.

We thank Jack Wisdom, Dan Scheeres, Jay McMahon, and
Seth Jacobson for useful discussions, and the anonymous
reviewer for excellent suggestions. This material is based upon

Figure 11. Satellite spin rate variations for four possible trajectories of 1991
VH. From top to bottom, the initial values of satellite spin rate, normalized by
n, are 0.45, 1.70, 2.38, 2.60.
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