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Abstract

Mercury has a near-zero obliquity, i.e. its spin axis is nearly perpendicular to its orbital plane. The value of the obliquity must be known precisely
in order to constrain the size of the planet’s core within the framework suggested by Peale [Peale, S.J., 1976. Nature 262, 765–766]. Rambaux and
Bois [Rambaux, N., Bois, E., 2004. Astron. Astrophys. 413, 381–393] have suggested that Mercury’s obliquity varies on thousand-year timescales
due to planetary perturbations, potentially ruining the feasibility of Peale’s experiment. We use a Hamiltonian approach (free of energy dissipation)
to study the spin–orbit evolution of Mercury subject to secular planetary perturbations. We can reproduce an obliquity evolution similar to that of
Rambaux and Bois [Rambaux, N., Bois, E., 2004. Astron. Astrophys. 413, 381–393] if we integrate the system with a set of initial conditions that
differs from the Cassini state. However the thousand-year oscillations in the obliquity disappear if we use initial conditions corresponding to the
equilibrium position of the Cassini state. This result indicates that planetary perturbations do not force short-period, large amplitude oscillations
in the obliquity of Mercury. In the absence of excitation processes on short timescales, Mercury’s obliquity will remain quasi-constant, suggesting
that one of the important conditions for the success of Peale’s experiment is realized. We show that interpretation of data obtained in support
of this experiment will require a precise knowledge of the spin–orbit configuration, and we provide estimates for two of the critical parameters,
the instantaneous Laplace plane orientation and the orbital precession rate from numerical fits to ephemeris data. Finally we provide geometrical
relationships and a scheme for identifying the correct initial conditions required in numerical integrations involving a Cassini state configuration
subject to planetary perturbations.
 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Mercury’s orbit is not fixed in space but precesses because of
torques exerted by planets exterior to its orbit. To first order, if
we consider perturbations of the planets on Mercury but neglect
mutual interactions between planets, Mercury’s orbit precesses
with a period of about 235 kyr and a constant inclination with
respect to a plane called the Laplace plane. Mercury’s spin vec-
tor is also expected to precess if the planet is a Cassini state, an
evolved rotational state where the spin axis, orbit normal, and
normal to the Laplace plane are coplanar while the obliquity re-
mains constant (Colombo, 1966; Peale, 1969, 1988). In order to
maintain coplanarity in the Cassini state, the spin axis precesses
at the same rate as the orbital plane (see, e.g., Ward, 1975;
Gladman et al., 1996). Radar measurements (Pettengill and
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Dyce, 1965) revealed Mercury’s unusual 3:2 spin–orbit reso-
nance: the orbital period (∼88 days) is exactly 3/2 of the spin
period (∼59 days).

Provided that the planet is in a Cassini state, Peale (1976) has
shown that the knowledge of the second degree coefficients of
the gravity field, the 88-day libration amplitude, and the obliq-
uity can be used to determine the state and size of the Hermean
core. While the knowledge of the 88-day libration amplitude
and C22 gravitational harmonic are sufficient to distinguish a
molten core from a solid core (Margot et al., in preparation), the
combination of all four quantities above is needed to evaluate
the moment of inertia C and the ratio Cm/C between the mo-
ment of inertia of the mantle and the moment of inertia of the
entire planet. This ratio with assumptions on mantle and core
densities can be used to constrain the size of the core. Therefore
a good description of the obliquity behavior is essential to infer
the radius of Mercury’s core, which is itself critical to further
our understanding of terrestrial planet formation and evolution.
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One of the goals of both the MESSENGER (Solomon et
al., 2001) and Bepi–Colombo missions (Milani et al., 2001)
is to determine these quantities (gravity field, librations, obliq-
uity) for Mercury. Earth-based radar data can also be used to
determine the libration amplitude and the instantaneous spin
orientation.

The idealized situation in Peale’s experiment can be compli-
cated by the presence of free modes of rotation. A free mode
has an arbitrary phase and amplitude but its frequency is fixed.
Possible free modes are a libration in longitude which produces
a variation of the rotation angle about the spin axis with a pe-
riod of order 15 years (Peale, 1974) and a precession which
moves the spin axis around the Cassini state with a period of
order 1000 years (Colombo, 1966; Peale, 1974). A free libra-
tion in longitude would not affect the obliquity nor the ability
to distinguish a molten from a solid core. But a free preces-
sion would change the orientation of the spin axis in space and
therefore the obliquity value, potentially ruining the ability to
determine the radius of the core in Peale’s experiment.

Peale (2005) examined the free rotational motions of Mer-
cury and their damping by considering tidal friction and dis-
sipation at the core–mantle interface. He derived damping
timescales for these modes of about 105 years, much shorter
than the age of the Solar System. If the free modes are detected
in the spin state measurements, it will indicate an active or re-
cent excitation mechanism, as the amplitude of the free modes
should decay on ∼105 year timescales.

Rambaux and Bois (2004) have suggested that plane-
tary perturbations cause obliquity variations on thousand-year
timescales, much less than the 105 year damping timescales.
Their numerical integrations show that Mercury’s obliquity is
not constant with time. The authors find variations of a few arc-
minutes around a mean value of about 1.6 arcmin at a proper
frequency of 1066 years, corresponding to the free precession
period for the values of moments of inertia they chose. For a
rigid body, the free precession frequency νP is given to first
order by the equation

(1)νP = n
C − (A + B)/2

C

which follows from Euler’s equations for rigid-body rotation.
In this equation, n is the mean motion, A, B and C the mo-
ments of inertia. An expression for the precession frequency
that takes the triaxial shape and the resonant rotation of Mer-
cury into account is given by Peale (2005). The free libration
period similarly depends on the moments of inertia.

In this paper, we investigate the value of the obliquity and
its time evolution. We use a Hamiltonian formulation which in-
cludes secular planetary perturbations but no internal energy
dissipation to compute the spin–orbit motion of Mercury. The
formalism is described in Section 2. Readers who are not in-
terested in Hamiltonian mechanics can proceed to Section 3
without too much loss of continuity. Section 3 is devoted to
the determination of the Laplace plane which is central to this
problem and to the definition of the Cassini state. In Section 4,
we present geometrical relationships between the obliquity and
other variables defining the Cassini state. Results of the nu-
merical integrations of the system are presented in Section 5,
including one simulation that reproduces the oscillations in the
obliquity seen by Rambaux and Bois (2004). We find that inte-
grations started in the Cassini state do not exhibit oscillations.
In Section 6, we present a practical way to numerically find
the position of the Cassini state and the associated obliquity.
The equilibrium obliquity—important for the interpretation of
future Mercury geodesy data—depends on the values of the mo-
ments of inertia and other parameters, which we investigate in
Section 7.

2. Method

One way to study the spin–orbit motion of Mercury is to
numerically integrate the motions of the planets of the Solar
System with a relativistic integrator (e.g., Rambaux and Bois,
2004). Another way is to use a simplified analytical approach.
In a masterful paper, D’Hoedt and Lemaitre (2004) obtain the
equilibrium solutions and the frequencies of the spin-axis mo-
tion by using Hamilton’s equations. In order to maintain a
tractable Hamiltonian with two degrees of freedom, those au-
thors make the following simplifications: principal axis rota-
tion, a description of the gravity field limited to second degree
and order terms, no planetary perturbations, no tides nor damp-
ing, and all the perturbations with period equal or smaller to the
revolution period (88 days) are neglected.

For the convenience of the reader, we briefly describe the ref-
erence frames and the Andoyer and Delaunay variables that are
used in the development of the Hamiltonian. Additional details
can be found in D’Hoedt and Lemaitre (2004). The reference
frame X0, Y0, Z0 is based on the ecliptic plane at epoch J2000.
This choice of reference frame allows us to easily add planetary
perturbations. The frame tied to the orbital plane is denoted by
X1, Y1, Z1, the frame tied to the spin orientation is denoted by
X2, Y2, Z2, and the frame tied to the principal axes of inertia is
denoted by X3, Y3, Z3.

The Andoyer variables (l, g,h,L,G,H) (Deprit, 1967) de-
scribe the rotation of Mercury. Three lowercase symbols rep-
resent angles and three uppercase symbols represent conju-
gated momenta: g + l is the angle between X2 and the axis
of minimum inertia X3, h is the angle between X0 and X2
(the longitude of the ascending node of the spin in the ecliptic
frame), G is the norm of the spin angular momentum of Mer-
cury, H = G cosK is the projection of the angular momentum
vector on the inertial axis Z0 where we define K as the angle
between Z0 and Z2 (the inclination of the spin axis with respect
to the ecliptic plane), and L is the projection of the angular mo-
mentum on Z3 and is equal to G because of the assumption of
principal axis rotation. The non-singular Andoyer variables are
given by Λ1 = G and Λ3 = G(1 − cosK), λ1 = l + g + h and
λ3 = −h.

The Delaunay variables (l0, g0, h0,L0,G0,H0) express the
revolution of Mercury with respect to the inertial frame. They
are related to the planetary orbital elements with the momenta

L0 = m
√

G(M + m)a0, G0 = L0

√
1 − e2

0, H0 = G0 cos i0,
where m is the mass of Mercury, M is the mass of the Sun,
and G is the gravitational constant when it appears in front of
a mass symbol. The corresponding angles are as follows: l0
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is the mean anomaly, g0 = ω0 is the argument of pericenter,
and h0 = Ω0 is the longitude of the ascending node. The semi-
major axis, eccentricity and inclination of the orbit with respect
to the J2000 ecliptic plane (X0, Y0,Z0) are denoted with the
usual symbols a0, e0 and i0, respectively.

The obliquity θ can be computed from a combination of An-
doyer variables and orbital elements:

(2)cos θ = cos i0 cosK + sin i0 sinK cos(Ω0 − h).

We have reproduced the development of the Hamiltonian
derived by D’Hoedt and Lemaitre (2004) using a mathemati-
cal software for symbolic computation. After some canonical
transformations and development in the eccentricity up to or-
der 3, the Hamiltonian contains several thousands terms and
can be shortened by averaging in the fast varying angles (the
mean anomaly l0 and λ1). The remaining terms include only
the long period angles (h, h0 and g0) and the spin–orbit reso-
nant angle

(
λ1 − 3

2 l0
)
. The final Hamiltonian with two degrees

of freedom is included here for convenience:

H2 = Λ2
1

2C
− m3µ2

2
(
Λ0 − 3Λ1

2

)2

− GMm7µ3R2

(
Λ0 − 3Λ1

2

)6

[
1

2
C20

(
1 + 3e2

0

2

)

×
(

−1

4

(−1 + 3 cos2 i0
)(−1 + 3 cos2 K

)

− 3

4

(
1 − cos2 i0

)(
1 − cos2 K

)
cos(2σ3)

− 3 cos i0 cosK cosσ3 sin i0 sinK

)

+ 3C22

(
7e0

2
− 123e3

0

16

)

×
(

1

16
(1 + cos i0)

2(1 + cosK)2 cos(2σ1)

+ 1

16
(1 − cos i0)

2(1 − cosK)2 cos(2σ1 + 4σ3)

+ 1

4
(1 + cos i0)(1 + cosK) cos(2σ1 + σ3) sin i0 sinK

+ 1

4
(1 − cos i0)(1 − cosK) cos(2σ1 + 3σ3) sin i0 sinK

(3)+ 3

8
cos(2σ1 + 2σ3) sin2 i0 sin2 K

)]
,

where µ = G(m + M), σ1 = λ1 − 3
2 l0 − h0 − g0, σ3 = h0 − h,

cosK = 1 − Λ3
Λ1

, Λ0 = L0 + 3
2Λ1, C20 and C22 are the second-

degree gravitational harmonics, C is the polar moment of in-
ertia and R is the radius of Mercury. The angles σ1 and σ3
are the main angles in this problem. They are canonical vari-
ables that have been chosen in order to reduce the complexity of
the Hamiltonian. Their geometrical significance is not straight-
forward, since these angles are not defined in a single plane.
Roughly speaking, σ1 is the angle related to the libration in
longitude while σ3 (the difference between the longitude of the
ascending node of the orbit and that of the spin axis) is the angle
related to the spin precession.

At this point the Hamiltonian does not capture the preces-
sion of the orbital plane because planetary perturbations are not
included. In order to take these effects into account, we add the
secular parts of the perturbing potential for 7 exterior planets
(Murray and Dermott, 1999). We make use of the same vari-
ables, same canonical transformations and same assumptions:
3:2 resonance, no small period terms, no dissipation. The per-
turbing potential is given by

Rsec =
7∑

k=1

Gmkαk

8ak

(
b

(1)
3/2e

2
0 − 4 sin2 i0

2
b

(1)
3/2

− 2e0ek cos(	0 − 	k)b
(2)
3/2

(4)+ 8 sin
i0

2
sin

ik

2
cos(Ω0 − Ωk)b

(1)
3/2

)
,

where mk is the mass of planet k, b are the Laplace coefficients,
ak , ek , ik , 	k , ωk and Ωk are the semi-major axis, eccentricity,
inclination, longitude of the pericenter, argument of pericenter
and longitude of the ascending node of the planet k, respec-
tively (the subscript 0 represents Mercury’s elements), and αk =
a0/ak . We then replace in the full Hamiltonian the orbital ele-
ments of Mercury with the appropriate Delaunay variables. By
subtracting1 Rsec from H2, we obtain a Hamiltonian with 4 de-
grees of freedom. The two additional degrees of freedom come
from the two pairs of orbital elements (ω0, e0) and (Ω0, i0)
which now exhibit secular changes due to the planetary per-
turbations. The four angle combinations and their conjugated
momenta are (σ1,Λ1), (σ3,Λ3), (h0, H ′

0 = H0 + Λ1 − Λ3),
and (g0, G′

0 = G0 + Λ1).
The three Euler angles defining the orientation of the body

axes in the ecliptic frame can be expressed as a function of the
canonical variables:

(h,K,g + l) =
(

h0 − σ3, arccos

(
1 − Λ3

Λ1

)
,

(5)σ1 + σ3 + 3

2
l0 + g0

)
.

We numerically integrate Hamilton’s equations with respect to
the 8 canonical variables and track the time evolution of both
the spin–orbit variables (σ1,Λ1, σ3,Λ3) and Mercury’s orbital
elements (i0, e0,Ω0,ω0). Our initial conditions for the plane-
tary elements at epoch J2000 were computed by Standish et al.
(1992, Table 5.8.1). We use the C20 and C22 numerical values
from the Anderson et al. (1987) analysis of Mariner 10 radio
science data.

The secular potential induces a retrograde precession of the
orbital plane. The argument of pericenter ω0 precesses in the
prograde direction twice as fast as the longitude of the ascend-
ing node Ω0 regresses, while the eccentricity e0 and inclination
i0 vary quasi-periodically. However, over the few thousand-year

1 The subtraction is required because the perturbing potential is defined with
the sign opposite to that normally used in a potential (∼−GM/r) (Brouwer and
Clemence, 1961).
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timescale relevant to the problem, the four osculating elements
of Mercury have a roughly linear behavior.

Although our secular potential is clearly a simplification of
reality, it is adequate for the purpose at hand. On a timescale of
a few kyr, the secular potential captures most of the influences
due to exterior planets. Our goal is not to include all the possible
effects but to investigate how the motion of Mercury is affected
by external perturbers. When using the Hamiltonian formalism,
we neglect mutual perturbations between the planets and as-
sume that the orbital elements of the perturbers remain constant
with time. These assumptions are justified for the timescales of
interest in this work. Relevant timescales are described in more
detail in Section 3.2. The short-period terms disappear from the
Hamiltonian because of the averaging process. The influence
of these terms can be safely neglected in our computations be-
cause they induce changes in the rotation variables that have
very small amplitudes (∼ a few arcsec). Additional justifica-
tions for our assumptions are given at the end of Section 5. We
also neglect smaller corrections such as general relativistic ef-
fects.

3. Position of the Laplace plane

There have been confusions in recent literature about the
plane that is relevant in the Cassini problem. Neither the ecliptic
nor the invariable plane (the plane perpendicular to the angular
momentum of the Solar System) properly identify the Cassini
state. Here we compute the position of the relevant reference
plane called the Laplace plane.

In an idealized system it would be the plane about which the
orbital inclination remains constant throughout the precessional
cycle. In practice it is the plane about which variations in orbital
inclination are minimized. We describe three determinations of
the Laplace plane, one based on the secular theory, one based on
numerical fits to ephemerides, and one based on an analytical
formulation.

3.1. Secular theory

The analytical solution is obtained by computing the secu-
lar perturbations from all the planets on Mercury’s orbit. It is
fully consistent with our Hamiltonian formulation but not as
accurate as the numerical solution. If we let pk = sinΩk sin ik
and qk = cosΩk sin ik and assume small planetary inclinations
(cos ik/2 ∼ 1), the secular perturbing potential (4) becomes

Rsec =
7∑

k=1

Gmka0

8a2
k

(
b

(1)
3/2e

2
0 − (

p2
0 + q2

0

)
b

(1)
3/2

− 2e0ek cos(	0 − 	k)b
(2)
3/2

(6)+ 2pkp0b
(1)
3/2 + 2qkq0b

(1)
3/2

)
.

Following Burns et al. (1979), we define a precession frequency
due to each exterior planet k as

(7)wk = mka
2
0nb

(1)
3/2

4Ma2
,

k

where n is the mean motion of Mercury. The sum of these pre-
cession rates wk yield the precession rate of Mercury’s orbit,
with a period of about 235 kyr. The Lagrange planetary equa-
tions for Mercury’s p and q values are

(8)q̇0 =
7∑

k=1

(pk − p0)wk, ṗ0 =
7∑

k=1

(qk − q0)wk.

The Laplace plane for Mercury is the plane for which ṗ0 =
q̇0 = 0:

(9)p0 =
∑

pkwk∑
wk

, q0 =
∑

qkwk∑
wk

.

This determination of the position of the Laplace plane is fully
consistent with our formulation for including planetary pertur-
bations in the Hamiltonian without mutual interactions. The
coordinates of the normal to the Laplace plane in J2000 ecliptic
coordinates are

(10)λsec = −8.8◦, βsec = 87.9◦,

where λ is the ecliptic longitude and β the ecliptic latitude. With
the simple secular potential, the inclination ι between Mer-
cury’s orbit and the Laplace plane remains quasi-constant. Our
solution for the position of the Laplace plane differs from the
invariable plane by about 1◦ (Fig. 1) while the angular distance
between the Laplace pole and the ecliptic pole is about 2.1◦.
Errors in the position of the Laplace plane translate into errors
on the position of the Cassini state that are about 2 orders of
magnitude smaller due to the 1 in 200 proportion between the
obliquity (∼1.5 arcmin) and the angle between the Laplace pole
and the orbit pole (ι � 5.33◦). However, if the ecliptic plane or
the invariable plane is erroneously used in the Cassini problem,
the error on the Cassini state position can be of order 0.1 arc-
min.

We have verified numerically that the orbit pole from our
integrations precesses around the Laplace pole in a regular man-
ner in about 235 kyr. The inclination remains within 0.2 arcmin
of 5.33◦. Since the secular Laplace plane is inclined by about
2.1◦ with respect to the ecliptic pole, the instantaneous preces-
sion frequency around the ecliptic pole is not constant and its
instantaneous value varies between 150 and 320 kyr. Averaged
over one cycle, the precession period around the ecliptic pole is
∼235 kyr, as expected.

3.2. Numerical fits to ephemerides

A simplified description of the orbital motion that neglects
the coupling between planets is a logical first step in studying
the dynamics of the Cassini state for Mercury. This approach
was adopted by Peale (1969, 1974) who considered a single
precession frequency. In reality the motion of Mercury is more
complex. For example, mutual perturbations between planets
yield variations in the orbital elements and it is no longer pos-
sible to define a plane about which the inclination remains con-
stant. If the coupling between the planets is taken into account,
two eigen modes with periods of ∼230 and ∼184 kyr domi-
nate influences on the orbital motion of Mercury (e.g., Brouwer
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and van Woerkom, 1950), producing a beat frequency of about
(900 kyr)−1. The fastest variations in orbital elements occur
on ∼70 kyr timescales, as indicated by the highest frequency
modes in the Laskar (1988) series.

The complex motion of the orbital plane can be approxi-
mated at any given time by precession about a specific axis.
We use this property to define an instantaneous Laplace plane
that is inclined with respect to the orbit by an angle ι. The plane
is chosen such that over a few kyr, variations in orbital incli-
nation with respect to the Laplace plane are minimized in a
least-squares sense. We argue that this plane defines the cur-
rent location of the Cassini state. The system is driven by tidal
torques and naturally evolves towards a Cassini state defined by
this instantaneous Laplace plane.

We numerically estimate the position of the instantaneous
Laplace plane near the J2000 epoch. We extract the orbital
orientation from the 20 kyr DE408 ephemerides computed by
Myles Standish and evaluate the instantaneous Laplace plane
positions over time intervals of ±1, ±2, ±4, and ±8 kyr around
J2000. As expected, the approximation of simple precession
about a fixed axis degrades with increasing duration of the time
interval. The best fit value for the Laplace pole over a ±1 kyr
interval in the ecliptic frame of J2000 is

(11)λinst = 66.6◦, βinst = 86.725◦

for which the rms inclination deviation is 0.14 arcsec over 2 kyr.
The position of the Laplace pole is constrained fairly well

in one dimension (the direction of the orbit pole trajectory pro-
jected on the ecliptic plane) but not in the orthogonal dimension
(Fig. 1). This is due to the fact that we fit a precessional mo-
tion with period ∼300 kyr with a data set that spans 2 kyr.
We compute error bars on the Laplace pole position as fol-
lows. For each trial pole (λ,β), we find the inclination ι that
minimizes inclination deviations in an rms sense. A 68.3% con-
fidence region is given by the locus of poles for which the sum
of squares of residuals is less than 3.3 times that of the best-
fit solution. This criterion was used to compute the confidence
region in Fig. 1. One-sigma uncertainties along the major and
minor axes of the ellipse are 1.5◦ and 1 arcmin. Despite seem-
ingly large uncertainties, the prospects for the interpretation of
future geodesy measurements remain good. The uncertainty on
the Laplace pole does not affect the coplanarity condition of
the Cassini state appreciably (Section 4) because the J2000 or-
bit pole orientation is aligned with the long axis of the Laplace
pole uncertainty region (Fig. 1).

We perform similar Laplace plane determinations with 1500
years of SONYR data provided by Nicolas Rambaux and with
the Laskar (1988) orbital element series. Our best fit value
for the instantaneous Laplace plane using the DE408 values,
Laskar series and SONYR integrations are all within 0.4◦ of
each other and are valid for a few hundred years around J2000.
We note that the instantaneous Laplace plane (11) is 3.4◦ from
the secular solution (10). The former is required for precise in-
terpretation of future ground-based and spacecraft data, while
the latter is required for consistency when using a simplified
secular potential to describe the spin–orbit motion.
Fig. 1. Positions of poles relevant to the Cassini problem projected on the J2000
ecliptic plane. Our determinations of the secular Laplace pole LP (10) and the
instantaneous Laplace pole based on DE408 data (11) are shown. The position
of the orbital pole (Standish, DE408) and of the invariable pole (Owen, 1990)
are also shown. The narrow cloud of points near the instantaneous Laplace pole
at J2000 represents a 68.3% confidence region for that pole.

In addition to the position of the Laplace pole, two related
quantities can be evaluated and are needed to compute the equi-
librium obliquity in the Cassini state. The orbital precession
rate µ around the Laplace pole corresponds to an instanta-
neous period of about 328 kyr and the angle ι is about 8.6◦.
These two quantities are highly correlated: when the inclina-
tion ι increases, the precession rate decreases. Both quantities
are affected by the uncertainty on the Laplace pole, yielding er-
ror bars of 50 kyr and 1.2◦ on the period and angle, respectively.
Peale (1981) has proposed an analytical expression to compute
the value of the equilibrium obliquity in the Cassini state θCS:

(12)

θCS = − Cµ sin ι

Cµ cos ι + 2nmR2
( 7

2 e0 − 123
16 e3

0

)
C22 − nmR2(1 − e2

0)
− 3

2 C20

.

This expression is valid only if θCS is small and is a function of
the precession frequency µ, the inclination ι and the moments
of inertia through the gravity coefficients C20 and C22, which
we hold at the nominal Mariner 10 values. Even with the large
error bars on µ and ι, the equilibrium obliquity is determined
with a small uncertainty. To understand why this is so, note that
to first order, the equilibrium obliquity θCS [Eq. (12)] is pro-
portional to the product µ sin ι. Over a given time interval, the
orbital pole determines an arc in the ecliptic frame that has a
fixed length. The quantity sin ι is roughly proportional to the
radius of the circle that best fits the orbital pole arc. The preces-
sion rate is obtained by the ratio between the angle subtended
by the orbital arc as seen from the Laplace pole in the eclip-
tic plane and the time interval. Therefore the product µ sin ι is
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Fig. 2. Time evolution of the equilibrium obliquity estimated over successive
2 kyr intervals from the DE408 ephemerides. The time t = 0 corresponds to the
J2000 epoch.

constant for all the poles in the direction orthogonal to the orbit
pole trajectory. Since the uncertainty region is mainly aligned
with the direction orthogonal to the orbit pole trajectory, can-
didate Laplace poles inside the uncertainty region yield very
similar obliquity values, all within 1 arcsec of each other. We
can assign uncertainties on the obliquity values by propagating
the formal errors on µ and ι through Eq. (12). This assumes
that the orbital ephemerides are perfectly known. We find un-
certainties less than 1% or 1 arcsec. Peale et al. (2002) have
shown that 10% uncertainties on the obliquity measurement are
sufficient to yield a 22% precision on the ratio Cm/C between
the moments of inertia of the mantle and of the planet.

We can use the 20 kyr timespan of the DE408 ephemeris
to study the time evolution of the position of the Laplace pole
and other related quantities such as µ, ι and θCS. We evalu-
ate these quantities using 2 kyr intervals centered on different
epochs. The position of the Laplace pole changes by a few de-
grees in about 20 kyr while the instantaneous precession period
increases from ∼200 to ∼500 kyr during the same interval. The
angle ι also increases with time, from 5◦ to 13◦. The errors bars
obtained for each parameter at different epochs are similar to
those at the J2000 epoch. Even if the precession rate µ and the
inclination ι evolve rapidly over 20 kyr, the equilibrium obliq-
uity variations are small, with a value ranging between 1.64 and
1.72 arcmin (Fig. 2).

3.3. Analytical determination of the Laplace pole

We can compare our numerical results to an analytical de-
termination of the Laplace pole by using an approach similar
to Peale (2006). Let us define the position of the orbital pole in
the ecliptic frame x = {sin i0 sinΩ0,− cosΩ0 sin i0, cos i0} and
its velocity v = dx

dt
. The orbit precesses around an axis defined

by the angular velocity of the orbit plane w = {a, b, c} so that
w × x = v. By developing w as a function of i0, Ω0 and their
time derivatives, we obtain a general expression for w

w =
{

di0

dt
cosΩ0 +

(
c − dΩ0

dt

)
sinΩ0 tan i0,

(13)
di0

dt
sinΩ0 −

(
c − dΩ0

dt

)
cosΩ0 tan i0, c

}
.

The norm of w gives the instantaneous precession rate µ around
the w vector while the angle ι is defined by the angle be-
tween w and x. Equation (13) has one degree of freedom with
the free parameter c and defines a curve in space, yielding
a family of Laplace poles. One particular value of the para-
meter c = −1.91 × 10−5 rad/yr appropriate for J2000 yields
the coordinates (11) of our Laplace pole determination which
minimizes the inclination variations. Our instantaneous Laplace
pole is part of a family of solutions for the w-based definition
of the Laplace pole. The equilibrium obliquity is independent
of the c parameter (the product µ sin ι is only a function of i0,
di0
dt

and dΩ0
dt

). Moreover, vectors fulfilling Eq. (13) all belong
to the same plane as the orbital vector x. These two conditions
ensure a unique Cassini state position for all w vectors.

4. Cassini state and initial conditions

We will show that initial conditions play a crucial role when
integrating the spin–orbit motion of Mercury. Here we derive
geometrical relationships between the quantities defining the
Cassini state and we formulate expressions for initial conditions
used in our integrations. If the Cassini equilibrium obliquity
θCS is known, we can deduce the position of the spin axis
corresponding to the Cassini state which we represent by the
vector C.

The coplanarity condition between the Laplace normal L,
the orbit normal O and the spin axis in the Cassini state imposes
that C is a linear combination of O and L:

(14)C = αO + βL.

Another condition comes from the fact that we define C, O and
L as unit vectors:

1 = C · C = (αO + βL) · (αO + βL)

(15)= α2 + β2 + 2αβL · O.

Defining γ = L · O and solving for β yield

(16)β = −αγ ±
√

α2γ 2 − α2 + 1.

Since the obliquity θCS is the angle between C and O, we have

(17)cos θCS = O · C = α + βO · L.

For each equilibrium obliquity θCS (4 Cassini states for Mer-
cury, Peale, 1969), we solve for α and β using Eqs. (16) and
(17), and we evaluate C using Eq. (14). The vector C can be
expressed as a function of the inclination of the spin axis in the
Cassini state KCS and the longitude of the ascending node hCS,
both of which are needed to specify initial conditions for nu-
merical integrations (Table 1). We have

(18)C = {sinhCS sinKCS,− coshCS sinKCS, cosKCS},
with angles defined with respect to the J2000 ecliptic frame.
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Table 1
Initial conditions for the spin–orbit variables corresponding to the Cassini state (CS) without planetary perturbations (line 1), to the Cassini state with planetary
perturbations (lines 2 and 3), and to those of Rambaux and Bois (2004) transformed to our variable set using Eq. (5) (line 4). The relevant epochs are J2000 (line 3)
and 1969-07-01 (line 4). In the Cassini state, the rotation frequency is exactly three halves of the revolution frequency n, which dictates the value for the spin angular
momentum Λ1. σ1 is the angle related to the libration in longitude. The spin orbit variable σ3 (the difference in node longitudes) in the Cassini state is equal to
σ3CS = h0 − hCS, and the associated momentum Λ3CS = Λ1(1 − cosKCS). Without planetary perturbations, the obliquity of Cassini state 1 is equal to 0 so that
the spin axis is aligned with the orbit normal

θ

arcmin
θCS
arcmin

K

deg
σ1
arcmin

σ3
arcmin

Λ1
mR2/yr

Λ3
mR2/yr

CS without planetary perturbations 0 0 i0 0 0 3
2 Cn Λ1(1 − cos i0)

CS with planetary perturbations θCS θCS KCS 0 σ3CS
3
2 Cn Λ3CS

1.5 1.5 7.029 0 2.67 13.306 0.1000
Non-CS equivalent to Rambaux and Bois (2004) 0 1.6 7.005 −3 0 13.305 0.0993
In the integrations that follow, we wish to monitor possible
departures from the Cassini state. We define an angle ε that
represents the angular deviation between the spin axis S and
the plane formed by the orbit pole O and Laplace pole L:

(19)sin ε = O × L
‖O × L‖ · S.

The angle ε is a measure of the proximity of the spin axis orien-
tation to the coplanarity condition of the Cassini state. The spin
pole leads the orbit pole when ε is positive while ε = 0 cor-
responds to the coplanarity condition of the Cassini state. The
angle ε should not be confused with the discrepancy between
the obliquity and the equilibrium obliquity θ − θCS. This last
quantity is difficult to evaluate since θCS is a priori unknown.
The Cassini state is reached when both conditions θ = θCS
and ε = 0 are fulfilled. The obliquity θ is the angle between
S and O, hence the spin axis cannot be displaced from the LO
plane by more than θ degrees (|ε| � θ ).

Without planetary perturbations, the Cassini state is defined
by θ = 0, implying ε = 0. When the planetary perturbations are
taken into account, the vectors O and S vary with time. There-
fore we numerically check at each timestep how close the spin,
orbit and Laplace poles are to coplanarity by computing the an-
gle ε.

5. Time evolution of the rotation variables

Having defined the formalism, the location of the Laplace
plane, and the initial conditions relevant to the Cassini state, we
now tackle the time evolution of the spin–orbit variables.

In the simplest case involving no planetary perturbations,
Hamilton’s equations with respect to the conjugated variables
yield four equilibrium values that correspond to the Cassini
states as shown by Peale (1974) and D’Hoedt and Lemaitre
(2004). One of the solutions, traditionally referred to as Cassini
state 1, has zero obliquity. D’Hoedt and Lemaitre (2004) have
also shown that motion around the equilibrium can be described
to first order by a harmonic oscillator. They derive two proper
frequencies which are in agreement with the numerical results
of Rambaux and Bois (2004). Our development also reproduces
the values of the two proper frequencies (1066 and 16 years) for
similar assumptions on the moment of inertia [C = 0.34mR2,
while A and B are derived from the nominal C20 and C22 from
Mariner 10 (Anderson et al., 1987)].
Fig. 3. Variation of Mercury’s obliquity over a period of 3000 years with pertur-
bations from external planets. (Top) Evolution with initial conditions identical
to those of Rambaux and Bois (2004), where the initial obliquity is 1.6 arcmin
away from the equilibrium obliquity. (Bottom) Evolution with an initial obliq-
uity that is 0.1 arcmin away from the equilibrium obliquity. The dashed line
is the angle ε that represents deviations from the coplanarity condition of the
Cassini state.

Our next step is to reproduce the results of Rambaux and
Bois (2004) who use a relativistic integrator for the spin–orbit
motion of the 8 planets of the Solar System. In order to do so,
we use the averaged Hamiltonian augmented by terms account-
ing for planetary perturbations. With initial conditions corre-
sponding to those of Rambaux and Bois (2004), we find that the
obliquity exhibits oscillations at the ∼1000-year period of the
free spin precession. Our model reproduces their Fig. 8 (Fig. 3,
top). This set of initial conditions (Table 1, line 4) does not cor-
respond to a Cassini state. The time evolution of other rotation
variables such as the Euler angles also matches the results of
Rambaux and Bois (2004). Both free precession and free li-
bration are present in the solution of the rotation angles. The
free libration in longitude changes the rotation velocity but does
not affect the obliquity, which is related only to the orientation
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of the spin axis is space. The obliquity oscillations are under-
stood as a manifestation of the free precession. The obliquity
oscillations maintain a constant amplitude because there is no
mechanism for damping free motions in our formalism.

We investigated whether a poor choice of initial conditions
for the integration might be responsible for the obliquity varia-
tions and we performed integrations with different sets of initial
conditions. Although the amplitude of the oscillations is indeed
sensitive to initial conditions, we find that substantial obliquity
oscillations occur over a wide range of initial conditions. The
bottom panel in Fig. 3 shows a set of initial conditions where
the initial obliquity is closer to the equilibrium obliquity.

Initial conditions corresponding to the Cassini state do not
result in obliquity oscillations. If the system is started at the
Cassini state (e.g., Table 1, line 2), the oscillations at the pre-
cession frequency do not appear. The libration in longitude
angle σ1, the spin angular momentum Λ1, and the obliquity
θ remain quasi-constant while the other spin–orbit angle σ3,
its conjugated momentum Λ3, and the ecliptic inclination K

vary with time due to the orbital motion, but without any os-
cillations. In this situation, the spin axis remains in the Cassini
state, even as the equilibrium location changes due to the orbital
plane precession. The spin angular momentum Λ1 is constant
because the 88-day forced libration has been averaged out in
our formalism.

The interpretation of these results is that planetary perturba-
tions do not excite free modes of rotation with large amplitudes.
Rather, deviations from the Cassini state result in a free preces-
sion of the spin axis whose signature is apparent in the form of
obliquity variations. The only way to avoid the creation of a free
precession and the resulting oscillations in obliquity is to start
the integration in the Cassini state. The obliquity oscillation
is always centered on the equilibrium obliquity and its ampli-
tude is given by the angular deviation from the Cassini state.
This deviation is constant with time and may come from an
obliquity that is slightly different from the equilibrium obliquity
θCS − θ , from a deviation from the Cassini state coplanarity ε,
or both.

Has Mercury reached the Cassini state? Peale (2005) has
shown that the timescale for the damping of the free modes due
to internal energy dissipation is ∼105 years. This is short with
respect to the age of the Solar System but longer than the ∼104

year timescale of the Laplace plane reorientation. Therefore the
damping may drive the planet towards an equilibrium position
that is in fact a moving target and the Cassini state may never
be reached. Nevertheless, because the damping timescales are
only slightly longer than the orbital variation timescales, and
because instantaneous Cassini state positions never deviate far
from each other (two orders of magnitude less than angular de-
viations between instantaneous Laplace planes), we anticipate
that the Cassini state has indeed been reached.

What one can say confidently on the basis of our integrations
is that if Mercury ever reached the Cassini state, it is likely to
have remained in this state, barring recent excitation processes.
We show in Section 6 that the planet remains in the Cassini
state when the Laplace plane orientation changes smoothly
on 104 year timescales, or equivalently when planetary per-
turbations are turned on smoothly on 104 year timescales.
The state is preserved because of torques on the asymmetric
planet.

We now reexamine the assumptions of our method. We note
that our Hamiltonian formalism does not capture short-period
terms due to the averaging process. We argue that the short-
period terms cannot produce large obliquity oscillations. For in-
stance, full numerical integrations by Rambaux and Bois (2004)
show obliquity curves (their Fig. 11) with short-period oscilla-
tions of less than 1 arcsec. Another assumption of our paper is
that the mutual interactions between planets can be neglected
for the timescale considered (a few kyr). These mutual interac-
tions do not strongly affect the equilibrium value for the obliq-
uity (as shown in Fig. 2) and the position of the Cassini state
on those timescales. Over a few thousand years, the obliquity
variations computed using DE408 ephemerides are smooth and
small (∼5 arcsec in 12 kyr). The fact that short-period terms
and mutual interactions between planets can be neglected on
kyr timescales is also supported by the results of Peale (2006).
Peale (2006) has shown by using planetary orbital ephemerides
averaged over 2000 years that the position of the Cassini state
changes with time as expected, that the spin axis remains within
1 arcsec of the Cassini state position, and that no large ampli-
tude oscillations are produced. Additionally he demonstrated
that if short-period terms are taken into account, because of the
adiabatic invariant theory, the spin axis remains within one arc-
sec of the Cassini state, provided that the set of initial conditions
is chosen in the Cassini state.

To summarize the results of our integrations of the spin–orbit
motion in the presence of planetary perturbations, we find that
obliquity variations can appear in the form of a free precession
if initial conditions do not coincide with a Cassini state. Obliq-
uity variations do not appear when initial conditions are chosen
carefully to represent a Cassini state.

6. Equilibrium obliquity in the Cassini state

The previous section illustrates that using initial conditions
coinciding with the Cassini state avoids the introduction of os-
cillations in the spin–orbit evolution. How does one find the
correct set of initial conditions? We showed in Section 4 that
the Cassini state position can be derived from a knowledge
of the equilibrium obliquity θCS and the orientation of the
Laplace plane. Here we describe a numerical technique for ob-
taining θCS.

We start with a configuration free of planetary perturbations
for which the Cassini state is known and for which the obliquity
is zero. We then add planetary perturbations smoothly enough
that the system preserves its Cassini state configuration even
though the orbital plane starts to precess. The trick consists
in turning on the planetary perturbations smoothly by gradu-
ally increasing the masses of the perturbers while Mercury’s
mass remains constant. This effectively prevents the introduc-
tion of step functions in the integration. Adding the planetary
perturbations abruptly would create free modes as before. Our
prescription for the evolution of perturber mass with time is a
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Fig. 4. Our prescription for a smooth evolution of the masses of the per-
turbers (top) and the corresponding obliquity evolution (bottom) over a period
of 10 kyr. The obliquity shows no oscillations when the perturber masses are
increased gradually and when the system is started in the perturbation-free
Cassini state. The dashed line shows the angle ε (in arcmin) between the spin
axis and the plane defined by the normal to the Laplace plane and the normal
to the orbital plane, i.e. a measure of the deviation from the coplanarity of the
Cassini state. Departures from the Cassini state remain small throughout the
integration.

spline function, starting at 0 and ending with the mass of each
planet (Fig. 4).

If we choose as initial conditions the Cassini state valid in
the absence of planetary perturbations (Table 1, line 1) and
gradually increase the perturber masses, we find that oscilla-
tions in the obliquity do not arise. Note that the energy of the
system is increasing with time in this configuration. The obliq-
uity increases smoothly, with roughly the same functional form
as the gradual increase in the masses of the perturbers (Fig. 4).
In addition, the spin axis remains very close to the Cassini
state throughout the evolution: the spin axis, the normal to the
Laplace plane and the normal to the orbital plane remain nearly
coplanar. The maximum value for the angle ε is a few arcsec
(Fig. 4, dashed line). Due to the relatively fast evolution of the
system (∼10 kyr, only about 10 spin precession periods), the
planet is not able to reorient itself fast enough and to keep up
with the changes in orbital motion. The planet is driven towards
the Cassini state without rotating around it. The quality of the
match to the Cassini state improves for longer time constants
in the time evolution of the perturber masses. In other words,
the gentler the introduction of the perturbations, the closer the
system remains to the Cassini state. We find maximal angular
deviations from the Cassini state ε of less than 4 arcsec if the
time constant for mass increase is about ten times the spin pre-
cession period.

We also find that the system follows the Cassini state if we
gradually turn off the planetary perturbations by reducing the
perturber masses to zero. The obliquity returns to zero without
oscillations, starting and ending in the exact, perturbation-free
Cassini state.

Finally, we verify that obliquity oscillations appear if the
system is integrated from a spin position that is different from
a Cassini state, even if planetary perturbations are introduced
gently as above. We chose initial conditions with departures
from the Cassini state of an arcmin or less and verified that
the obliquity exhibits oscillations at the proper frequency of
Fig. 5. Evolution of the masses of the perturbers (top) and the corresponding
obliquity evolution (bottom) over a period of 10 kyr with initial conditions that
do not coincide with a Cassini state. Note obliquity oscillations indicative of
free precession. The dashed line represents the angle ε which measures the
angular deviation from the strict coplanarity of the Cassini state.

Fig. 6. Obliquity vs the (B − A)/C and (C − A)/C ratios. The black and red
boxes show the allowable range for these ratios based on the Mariner 10 gravity
data, with C = 0.325mR2 and C = 0.38mR2, respectively.

∼1000 yr (Fig. 5). Here again, these oscillations are indicative
of a free precession.

7. Influence of the moments of inertia on the obliquity

The value of the equilibrium obliquity θCS is needed to infer
the size of the core in Peale’s experiment. In this section, we
compute how the moments of inertia A, B and C affect the
obliquity value and the Cassini state.

We investigate the dependence by numerically integrating
Hamilton’s equations for different sets of A, B and C with gen-
tle introduction of perturbations to avoid a free precession. As
previously noted by Peale (1988), we notice that although the
numerical values of the 3 moments of inertia are needed in the
Hamiltonian (or equivalently the C, C20 and C22 values), the
obliquity value that we obtain depends only on two combina-
tions of the moments of inertia (B − A)/C and (C − A)/C.
If we restrict the variations of the moments of inertia to the
range of values provided by the Mariner 10 gravity data and the
C/mR2 value to the 0.325–0.38 range encompassing all plausi-
ble interior models (Harder and Schubert, 2001), the obliquity
can take values between 1.2 and 2.9 arcmin (Fig. 6).
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Table 2
This table illustrates that the equilibrium obliquity depends strongly on preces-
sion parameters µ and ι. Values computed with Eq. (12) are given for different
polar moment of inertia, precession rates and different inclinations between
the orbit and the Laplace planes (ι = 6.3◦ corresponds to the invariable plane,
ι = 5.3◦ to the secular Laplace pole and ι = 8.6◦ to the instantaneous Laplace
pole). The equilibrium obliquity for our best fit values is given in bold and is
based on our determination of the instantaneous Laplace plane (Section 3.2).
The C20 and C22 values are those of Anderson et al. (1987)

Precession
period (kyr)

Inclination
ι (◦)

θ (arcmin)

C = 0.325mR2 C = 0.34mR2 C = 0.38mR2

235 5.3 1.39 1.45 1.63
235 6.3 1.65 1.73 1.93
235 8.6 2.24 2.34 2.62
328 5.3 0.995 1.04 1.16
328 6.3 1.18 1.24 1.38
328 8.6 1.60 1.68 1.87

Our numerical results for the obliquity in the Cassini state
can be compared with the solution of the analytical equation
(12) where C20 = −C−(A+B)/2

mR2 and C22 = B−A

4mR2 . We note that
the solution to Eq. (12)—and therefore the interpretation of
future obliquity measurements—is highly dependent on the val-
ues chosen for the parameters µ and ι. For A and B values
corresponding to the Mariner 10 gravity data and a polar mo-
ment of inertia C = 0.34mR2, the obliquity ranges between
1.0 and 2.3 arcmin for precession periods between 235 kyr
(secular value) and 328 kyr (instantaneous value) and orbit
inclinations ι between 5.3◦ and 8.6◦ (Table 2). This large
range of values emphasizes the importance of characterizing
the Cassini state precisely. For instance, the values obtained
from the secular analysis without mutual interactions (µ =
−2π/(235 kyr), ι = 5.3◦), C = 0.34mR2 and the Mariner grav-
ity values yield θCS = 1.45 arcmin using Eq. (12), in good
agreement with our numerical solution θCS = 1.49 arcmin.
But this solution is ∼0.2 arcmin away from the more accu-
rate numerical solution θCS = 1.68 arcmin. Correct interpreta-
tion of future data obtained in support of Peale’s experiment
will require the use of the instantaneous Laplace plane and
precession rate. With our best fit values for those parameters
derived in Section 3.2 (precession period of 328 kyr and in-
clination ι = 8.6◦) and the Mariner 10 C20 and C22 values,
we expect the present obliquity of Mercury to range between
1.60 and 1.87 arcmin depending on the polar moment of iner-
tia.

8. Conclusions

We have investigated several problems related to the spin–
orbit motion of Mercury, to the occupancy of the Cassini state,
and to the applicability of Peale’s (1976) experiment to the
determination of core properties. We have reproduced and aug-
mented the Hamiltonian formalism developed by D’Hoedt and
Lemaitre (2004) to account for planetary perturbations on the
spin–orbit evolution of Mercury. This is accomplished by the
addition of a secular potential that captures the long term
effects of perturbations of exterior planets on Mercury’s or-
bit.
The first application of this formalism is an analytical deter-
mination of the Laplace plane. The coordinates of the Laplace
pole from the purely secular theory are λsec = −8.8◦, βsec =
87.8◦ with a precession period of 235 kyr. We also define an
instantaneous Laplace plane and compute its orientation using
ephemerides. This instantaneous Laplace pole is the most use-
ful for data interpretation and for numerical integrations since
it takes into account the mutual perturbations between planets
and does not suffer from the approximations of the secular the-
ory. Our best fit values for the instantaneous Laplace plane are
λinst = 66.6◦, βinst = 86.7◦, with a precession period of 328 kyr
and an inclination ι = 8.6◦. The error bars on these quantities
are ∼50 kyr and 1.2◦. However, the equilibrium obliquity [e.g.,
using Peale’s (1981) equation] is not largely affected by these
error bars (uncertainty less than 1 arcsec). We note that the
equilibrium obliquity depends strongly on the values assumed
for the precession rate and inclination between the orbit and
the Laplace planes. For instance, equilibrium obliquity values
range from 1.0 to 2.3 arcmin for precession periods from 235
to 328 kyr and for inclinations between 5.3◦ and 8.6◦. This il-
lustrates the importance of choosing the proper Laplace plane
and precession period for a correct interpretation of Mercury
interior properties in terms of observed spin–orbit parameters.
We find an equilibrium obliquity for nominal parameters of
θCS = 1.68 arcmin.

We have developed a set of geometrical constraints and
a numerical technique for identifying the position of the
Cassini state. The main idea is to start from the known,
perturbation-free Cassini state and to turn on planetary per-
turbations smoothly by gradually increasing the masses of the
perturbers. At the end of the integration, one can identify the
position of the Cassini state which can be used as a starting
point for other integrations.

The Hamiltonian formalism with a particular set of initial
conditions can reproduce the numerical results of Rambaux and
Bois (2004) that show thousand-year oscillations in the obliq-
uity of Mercury with an amplitude of 1.6 arcmin. We have
demonstrated that such oscillations result from the choice of
initial conditions rather than from the effect of planetary per-
turbations. Initial conditions that do not correspond to a Cassini
state lead to the introduction of obliquity variations in the form
of a free precession, i.e. if Mercury is displaced slightly from
the Cassini state, the planet oscillates around it and some free
motions appear. The amplitude of the obliquity oscillations is
equal to the initial deviation from the Cassini state. If initial
conditions representative of a Cassini state are chosen, the spin
axis remains very close to the Cassini state, and the obliquity
shows no large-amplitude variations.

Our results are obtained without the need for damping or
dissipation in the model. The damping period of the free pre-
cession is short compared to the age of the Solar System (Peale,
2005), but long compared to the free precession period (∼1 kyr)
and to that of the reorientation of the Laplace plane (∼10 kyr).
The damping has likely lead the spin axis to a spin position
very close to that of an instantaneous Cassini state. Once the
planet has reached the Cassini state, the torques resulting from
tidal dissipation and/or dissipation at a liquid core–solid mantle
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boundary will restore the spin to the Cassini state if it is dis-
placed for any reason (Peale, 2005). In the absence of active
or recent excitation processes, Mercury’s obliquity will there-
fore remain quasi constant over thousand-year timescales. This
configuration satisfies one of the important requirements for the
measurement of the size of the core of Mercury with the scheme
proposed by Peale (1976).
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