EPS SCI C179 / 279 Search for Extraterrestrial Intelligence (SETI) Spring 2024 WF 1:00–3:00 pm – Young 4232

Course Description:

Project-based course that addresses one of the most important scientific questions of our time: Are there other civilizations in the universe? Material from astronomy, computer science, signal processing, and statistics. Design of observational program, acquisition of telescopic data with the largest fully steerable telescope on Earth, development of algorithms to analyze data, and presentation of results. Introduction to the abundance and characteristics of extrasolar planetary systems; radio astronomy, including wave propagation and Doppler shift; signal processing, including sampling theory and Fourier transforms; random processes, including Gaussian and binomial statistics, and algorithm development. P/NP or letter grading. Students are invited to co-author a peer-reviewed publication that describes the search results.

Lectures (max. two hours/week) are supplemented with computer lab modules (min. two hours/week) that primarily rely on Python, Jupyter, and GitHub.

Instructor:

Professor Jean-Luc Margot (jlm@epss.ucla.edu)

Textbook:

There is no required textbook. Optional textbooks include:

Bracewell, R. The Fourier Transform and Its Applications, McGraw-Hill Press, W. Numerical Recipes in C: The Art of Scientific Computing Bevington, P. Data Reduction and Error Analysis for the Physical Sciences Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow Condon, J. and Ransom, S. <u>Essential Radio Astronomy</u>

EPS SCI C179 / 279 website:

https://bruinlearn.ucla.edu/courses/184628

EPS SCI C179 / 279 SETI – Spring 2024

Date	Lec.	Title	Lab.
W Apr. 03	L01	Introduction, syllabus, radio astronomy fundamentals	NB01 Python, Jupyter
F Apr. 05	L01	Radio astronomy fundamentals (continued)	Astropy
W Apr. 10	L02	Celestial coordinates	NB02 LST, Alt-Az
F Apr. 12		Design of observing program	Alt-Az general
W Apr. 17	L03	Stars, planets, habitable zones	NB03 Pandas
F Apr. 19	L04	Select and order sources	Travel. Salesp.
W Apr. 24	L05	Fourier transform, sampling theorem	NB04 FFT
F Apr. 26	L06	Orbital elements, Doppler variations due to orbits/spins	NB05 Time-Freq
W May 01	L07	Integrated power (shift and add)	Voyager 1
TBD	TBD	Observing with Green Bank Telescope	
TBD F May 03	TBD L08	Observing with Green Bank Telescope Noise statistics, relational databases	NB06 Stats, NB07 SQL
TBD F May 03 W May 08	TBD L08 L09	Observing with Green Bank TelescopeNoise statistics, relational databasesApplication Programming Interface	NB06 Stats, NB07 SQL NB08 API
TBD F May 03 W May 08 F May 10	TBD L08 L09 L10	Observing with Green Bank TelescopeNoise statistics, relational databasesApplication Programming InterfaceDescription of Final Projects	NB06 Stats, NB07 SQL NB08 API
TBD F May 03 W May 08 F May 10 W May 15	TBD L08 L09 L10 L11	Observing with Green Bank TelescopeNoise statistics, relational databasesApplication Programming InterfaceDescription of Final ProjectsChirp waveforms	NB06 Stats, NB07 SQL NB08 API Project
TBD F May 03 W May 08 F May 10 W May 15 F May 17	TBD L08 L09 L10 L11	Observing with Green Bank TelescopeNoise statistics, relational databasesApplication Programming InterfaceDescription of Final ProjectsChirp waveformsTelecommunication principles, interference	NB06 Stats, NB07 SQL NB08 API Project Project
TBD F May 03 W May 08 F May 10 W May 15 F May 17 W May 22	TBD L08 L09 L10 L11	Observing with Green Bank TelescopeNoise statistics, relational databasesApplication Programming InterfaceDescription of Final ProjectsChirp waveformsTelecommunication principles, interferenceDispersion in interstellar medium	NB06 Stats, NB07 SQL NB08 API Project Project Project
TBD F May 03 W May 08 F May 10 W May 15 F May 17 W May 22 F May 24	TBD L08 L09 L10 L11	Observing with Green Bank TelescopeNoise statistics, relational databasesApplication Programming InterfaceDescription of Final ProjectsChirp waveformsTelecommunication principles, interferenceDispersion in interstellar mediumDistributed and GPU computing	NB06 Stats, NB07 SQL NB08 API Project Project Project Project
TBD F May 03 W May 08 F May 10 W May 15 F May 17 W May 22 F May 24 W May 29	TBD L08 L09 L10 L11	Observing with Green Bank TelescopeNoise statistics, relational databasesApplication Programming InterfaceDescription of Final ProjectsChirp waveformsTelecommunication principles, interferenceDispersion in interstellar mediumDistributed and GPU computingMachine learning techniques	NB06 Stats, NB07 SQL NB08 API Project Project Project Project Project Project
TBD F May 03 W May 08 F May 10 W May 15 F May 17 W May 22 F May 24 W May 29 F May 31	TBD L08 L09 L10 L11	Observing with Green Bank TelescopeNoise statistics, relational databasesApplication Programming InterfaceDescription of Final ProjectsChirp waveformsTelecommunication principles, interferenceDispersion in interstellar mediumDistributed and GPU computingMachine learning techniquesFiltering techniques, natural vs. artificialsignals	NB06 Stats, NB07 SQL NB08 API Project Project Project Project Project Project Project
TBD F May 03 W May 08 F May 10 W May 15 F May 17 W May 22 F May 24 W May 29 F May 31 W Jun. 05	TBD L08 L09 L10 L11	Observing with Green Bank TelescopeNoise statistics, relational databasesApplication Programming InterfaceDescription of Final ProjectsChirp waveformsTelecommunication principles, interferenceDispersion in interstellar mediumDistributed and GPU computingMachine learning techniquesFiltering techniques, natural vs. artificialSignalsFinal project presentations	NB06 Stats, NB07 SQL NB08 API Project Project Project Project Project Project Project

LEARNING OUTCOMES

Understand celestial coordinates and compute rise-transit-set times for sources Understand radio astronomy fundamentals including sensitivity and Doppler shift Understand abundance of planets and conditions for planetary habitability Design and implement an observational program for a large radio telescope Implement algorithms in Python to solve scientific problems Perform spectral analysis of time-series data with the Fast Fourier Transform Understand noise statistics and relevant probability distributions Use Python-based graphical tools to present results of data analysis Understand database concepts and access large database with Python Complete a research project from conception to oral presentation of results

GRADING

Undergraduate students: grading is based on up to five problem sets (20%), course participation (25%), submitting a course evaluation (5%), and a final project (50%) that **need not** require implementation of machine learning, GPU computing, or other advanced CS techniques.

Graduate students: grading is based on up to five problem sets (20%), course participation (25%), submitting a course evaluation (5%), and a final project (50%) that **may** require implementation of machine learning, GPU computing, or other advanced CS techniques.

THE FINE PRINT

You are responsible for all material covered in lectures or reading. A PDF version of the lecture notes will be posted on the course web page.

Academic integrity is expected at all times. Collaboration between students is usually permitted, but the work that you submit for your homework and final presentation should be your own work. The careful use of large language models (e.g., ChatGPT) is tolerated as long as you independently validate the proposed solutions and acquire the skills that would allow you to independently produce similar solutions.

Title IX prohibits gender discrimination, including sexual harassment, domestic and dating violence, sexual assault, and stalking. Students who have experienced sexual harassment or sexual violence can receive confidential support and advocacy at the CARE Advocacy Office for Sexual and Gender-Based Violence, 1st Floor Wooden Center West, <u>CAREadvocate@caps.ucla.edu</u>, (310) 206-2465. You can also report sexual violence or sexual harassment directly to the University's Title IX Coordinator, 2241 Murphy Hall, <u>titleix@conet.ucla.edu</u>, (310) 206-3417.